
z/OS

MVS Programming: Authorized
Assembler Services Reference, Volume 4
(SETFRR-WTOR)

SA22-7612-02

IBM

z/OS

MVS Programming: Authorized
Assembler Services Reference, Volume 4
(SETFRR-WTOR)

SA22-7612-02

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 359.

Third Edition, September 2002

This is a major revision of SA22-7612-01.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), to Version 1 Release 4 of z/OS.e™ (5655-G52), and
to all subsequent releases and modifications until otherwise indicated in new editions.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . v

Tables . vii

About this document . ix

Summary of changes . xiii

Using the Services . 1

SETFRR — Set Up Functional Recovery Routines 25

SETLOCK — Control Access to Serially Reusable Resources 31

SETRP — Set Return Parameters 43

SJFREQ — Call Scheduler JCL Facility Services 53

SPIE — Specify Program Interruption Exit 87

SPOST — Synchronize POST 93

SRBSTAT — Save, Restore, or Modify SRB Status 95

SRBTIMER — Establish Time Limit for System Service 99

STATUS — Stop, Start, or Put a Subtask in Process Must-Complete Mode 103

STORAGE — Obtain and Release Storage 109

SUSPEND — Suspend Execution of an RB 127

SUSPEND — Suspend Execution of an SRB 129

SVCUPDTE — SVC Update 135

SWAREQ — Invoke SWA Manager in Locate Mode 145

SWBTUREQ — Call SJF SWBTU Processing Services 151

SYNCH and SYNCHX — Take a Synchronous Exit to a Processing
Program . 161

SYSEVENT — System Event 169

TCBTOKEN — Request or Translate the TTOKEN 189

TCTL — Transfer Control from an SRB Routine 197

TESTAUTH — Test Authorization of Caller 199

TIMEUSED — Obtain Accumulated CPU or Vector Time 203

© Copyright IBM Corp. 1988, 2002 iii

T6EXIT — Type 6 Exit . 207

UCBINFO — Return Information from a UCB 209

UCBLOOK — Obtain Addresses of UCB Segments 247

UCBPIN — Pinning or Unpinning a UCB 257

UCBSCAN — Scan UCBs . 265

VSMLIST — List Virtual Storage Map 287

VSMLOC — Verify Virtual Storage Allocation 295

VSMREGN — Obtain Private Area Region Size 301

WAIT — Wait for One or More Events 305

WTL — Write To Log . 311

WTO — Write to Operator . 319

WTOR — Write to Operator with Reply 339

Appendix. Accessibility . 357

Notices . 359

Index . 363

iv z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Figures

1. Sample User Parameter List for Callers in AR Mode 5
2. Sample Macro Syntax Diagram . 13
3. Continuation Coding . 15
4. Relationship of Data and Work Areas Referenced in IEFSJTRP 155

© Copyright IBM Corp. 1988, 2002 v

vi z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Tables

1. Passing User Parameters in AR Mode . 4
2. Sample Callable Service Syntax Diagram . 15
3. Service Summary . 17
4. Return Codes for the SETLOCK Macro . 35
5. Return Codes for SETLOCK RELEASE . 38
6. Return Codes for SETLOCK TEST . 41
7. Return and Reason Codes for the SJFREQ RETRIEVE Service 58
8. Return and Reason Codes for the SJSMREAS Macro 62
9. Return and Reason Codes for the SJFREQ Macro SWBTU_MERGE Service 69

10. Required Fields for SJFREQ VERIFY Functions 71
11. SJFREQ VERIFY Output Fields . 73
12. SJF Operand and Keyword Operand Descriptions 74
13. Return and Reason Codes for the SJFREQ Macro VERIFY Service 75
14. Return Codes from the SJFREQ TERMINATE Service 82
15. Return Codes for the SRBTIMER Macro. 101
16. Return Codes for the STATUS Macro . 106
17. Return Codes for the SET/RESET Option . 107
18. Return Codes for STORAGE OBTAIN. 119
19. Return Codes for STORAGE RELEASE . 124
20. Return Codes for the SUSPEND Macro . 131
21. Return Codes for the SVCUPDTE Macro . 139
22. Return Codes for SWAREQ, UNAUTH=YES . 146
23. Return Codes for the SWAREQ Macro . 147
24. Parameter Combinations for SWBTUREQ RETRIEVE Functions 153
25. Return and Reason Codes for SWBTUREQ RETRIEVE 156
26. Return Codes for the SYSEVENT Macro . 174
27. Example of Output of Word One from SYSEVENT STGTEST 179
28. Return Codes for REQASCL . 180
29. Return Codes for REQASD and REQFASD . 181
30. Return Codes for REQSRMST . 182
31. Return Codes for REQLPDAT . 183
32. Return Codes for ENQHOLD . 184
33. Return Codes for ENQRLSE . 184
34. Return Codes for QVS . 187
35. Return Codes for the TCBTOKEN Macro . 192
36. Return Codes for the SAMPLE Macro . 202
37. Return Codes for the TIMEUSED Macro. 205
38. Return Codes for the UCBPIN Macro . 261
39. Return Codes for the VSMLIST Macro . 292
40. Return Codes for the VSMLOC Macro . 299
41. Return and Reason Codes for the WTL Macro 313
42. MCSFLAG Flag Names . 328
43. Return Codes for the WTO Macro . 331
44. MCSFLAG Flag Names . 346
45. Return Codes for the WTOR Macro . 349

© Copyright IBM Corp. 1988, 2002 vii

viii z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

About this document

This document supports z/OS (5694–A01) and z/OS.e (5655–G52).

This document describes the authorized services that the MVS operating system
provides; that is, services available only to authorized programs. An authorized
program must meet one or more of the following requirements:
v Running in supervisor state
v Running under PSW key 0-7
v Residing in an APF-authorized library and link-edited with authorization code

AC=1.

Some of the services included in this document are not authorized, but are included
because they are of greater interest to the system programmer than to the general
applications programmer. The functions of these services are of such a nature that
their use should be limited to programmers who write authorized programs.
Services are also included if they have one or more authorized parameters —
parameters available only to authorized programs.

Programmers using assembler language can use the macros described in this
document to invoke the system services that they need. This document includes the
detailed information — such as the function, syntax, and parameters — needed to
code the macros.

This document is divided into four volumes. Volumes 1 through 4 present the macro
descriptions in alphabetical order.

Who should use this document
This document is for the programmer who is using assembler language to code a
system program. A system program is usually one that runs in supervisor state or
that runs with PSW key 0-7 or resides on an APF-authorized library.

The document assumes that the reader understands system concepts and writes
programs in assembler language.

Assembler language programming is described in the following books:
v HLASM Programmer’s Guide
v HLASM Language Reference

Using this book also requires you to be familiar with the operating system and the
services that programs running under it can invoke.

How to use this document
This document is one of the set of programming documents for MVS. This set
describes how to write programs in assembler language or high-level languages,
such as C, FORTRAN, and COBOL. For more information about the content of this
set of documents, see z/OS Information Roadmap.

© Copyright IBM Corp. 1988, 2002 ix

Where to find more information
Where necessary, this document references information in other documents, using
shortened versions of the document title. For complete titles and order numbers of
the documents for all products that are part of z/OS, see z/OS Information
Roadmap (GC28-1727).

The following table lists titles and order numbers for documents related to other
products.

Short Title Used in This
Document

Title Order
Number

Principles of Operation* z/Architecture Principles of Operation SA22-7832

* Use the appropriate Principles of Operation document for the hardware you have installed.

PSF/MVS System
Programming Guide

Print Services Facility/MVS System
Programming Guide

S544-3672

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:

1. z/OS.e™ customers received a Memo to Licensees, (GI10-0684) that includes this key code.

x z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

Information updates on the web
For the latest information updates that have been provided in PTF cover letters and
Documentation APARs for z/OS and z/OS.e, see the online document at:

http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS

This document is updated weekly and lists documentation changes before they are
incorporated into z/OS publications.

About this document xi

|

|
|

|
|

|
|

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS

xii z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Summary of changes

Summary of changes
for SA22-7612-02
z/OS Version 1 Release 4

The document contains information previously presented in z/OS MVS
Programming: Authorized Assembler Services Reference SET-WTO, SA22-7612-01,
which supports z/OS Version 1 Release 3.

New information

v A new SYSEVENT, FREEAUX, is added.

v Information is added to indicate this books supports z/OS.e.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

Summary of changes
for SA22-7612-01
z/OS Version 1 Release 3

The document contains information previously presented in z/OS MVS
Programming: Authorized Assembler Services Reference SET-WTO, SA22-7612-00,
which supports z/OS Version 1 Release 1.

New information

v A new SYSEVENT, REQLPDAT, is added.

v A new output parameter, SRMSTCAP, is added to the REQSRMST SYSEVENT.

v A new TYPE=2 keyword is added to the SYSEVENT macro, for use only by
SYSEVENT ENQHOLD and ENQRLSE.

v An appendix with z/OS product accessibility information has been added.

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

Summary of changes
for SA22-7612-00
z/OS Version 1 Release 1

The document contains information also presented in MVS/ESA Programming:
Authorized Assembler Services Reference, Volume 4 (SETFRR-WTOR).

New information

v A new SYSEVENT, QVS, is added.

© Copyright IBM Corp. 1988, 2002 xiii

xiv z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Using the Services

Macros and callable services are programming interfaces that application programs
can use to access MVS system services. This chapter provides general information
and guidelines about how to use the macros and callable services accurately and
efficiently. For more specific and detailed information about coding a particular
macro or callable service, see the individual service description in this book.

Some of the topics covered in this chapter apply only to macros, some apply only to
callable services, and some apply to both. This chapter uses the word ″services″
when referring to information that applies to both service types. When information
applies only to one type or the other, the particular service type is specified.

The following table lists the topics covered in this chapter and whether the topic
applies to macros, callable services, or both:

Topic Service Type
“Compatibility of MVS Macros” Macros
“Addressing Mode (AMODE)” on page 2 Both
“Address Space Control (ASC) Mode” on page 3 Both

“ALET Qualification” on page 3 Both
“User Parameters” on page 4 Macros

“Telling the System about the Execution Environment” on page 5 Macros
“Specifying a Macro Version Number” on page 6 Macros
“Register Use” on page 7 Both
“Handling Return Codes and Reason Codes” on page 8 Both

“Handling Program Errors” on page 9 Both
“Handling Environmental and System Errors” on page 9 Both

“Using X-Macros” on page 10 Macros
“Macro Forms” on page 11 Macros
“Coding the Macros” on page 12 Macros
“Coding the Callable Services” on page 15 Callable Services

“Including Equate (EQU) Statements” on page 16 Callable Services
“Link-Editing Linkage-Assist Routines” on page 16 Callable Services

“Service Summary” on page 16 Both

Compatibility of MVS Macros
When IBM introduces a new version or a new release of an existing version, the
new version or release supports all MVS macros from previous versions and
releases. Programs assembled on an earlier level of MVS that issue macros will run
on later levels of MVS.

In most cases, the reverse is also true. When you assemble programs that issue
macros on a particular version and release of MVS, those programs can run on
earlier versions and releases of MVS, provided you request only those functions
that are supported by the earlier version and release. This is useful for installations
that write applications that might be assembled on one level of MVS, but run on a
different level.

As MVS supports new architectures, addressability changes; for example, support
for access registers was introduced in MVS/ESA. Support for 64-bit registers was
introduced in OS/390 R10. To take best advantage of the new architectures, some
macros have more than one possible expansion. You are required to have the

© Copyright IBM Corp. 1988, 2002 1

macro expand according to the environment in which the program runs. This topic
is described in this introductory information.

The problem of compatibility is not the same as selecting a macro version via the
PLISTVER parameter to ensure the correct parameter list size for a macro. For
selecting a parameter list version number, see “Specifying a Macro Version
Number” on page 6.

Addressing Mode (AMODE)
A program can run in 24-bit, 31-bit, or 64-bit addressing mode. A program that
executes in 24-bit or 31-bit addressing mode can invoke most of the services
described in this book. A program that executes in 64-bit addressing mode has a
smaller group of services that it can invoke.

In general,

v A program running in 24-bit addressing mode cannot pass parameters or
parameter addresses that are higher than 16 megabytes. However, there are
exceptions. For example, a program running in 24-bit addressing mode can:

– Free storage above 16 megabytes using the FREEMAIN macro

– Allocate storage above 16 megabytes using the GETMAIN macro

– Use cell pool services for cell pools located in storage above 16 megabytes
using the CPOOL macro

– Use page services for storage locations above 16 megabytes using the
PGSER macro.

v A program running in 24-bit or 31-bit addressing mode cannot pass parameter
addresses that are higher than 2 gigabytes, unless stated otherwise in the
individual service description.

v If a program running in 31-bit or 64-bit addressing mode issues a service,
parameters and parameter addresses can be above or below 16 megabytes,
unless otherwise stated in the individual service description.

Some macros can generate code that is appropriate for programs in either 64–bit
addressing mode or 24–bit or 31–bit addressing mode. These macros check a
global symbol set by the SYSSTATE macro. See “Telling the System about the
Execution Environment” on page 5 for more information.

When you call a callable service in 24-bit or 31-bit addressing mode, you must pass
31-bit addresses to the system service regardless of what addressing mode your
program is running in. If your program is running in 24-bit mode and you use a
callable service, you must set the high-order byte of parameter addresses to zeros.

You can invoke the following services in 64-bit addressing mode, subject to the
“SVC or PC” restrictions mentioned below, but you may not pass parameters and
parameter addresses above 2 gigabytes: ABEND, ATTACHX, CALLDISP, CHAP,
CSVQUERY, DELETE, DEQ, DETACH, DOM, DSPSERV, DYNALLOC, ENQ,
ESPIE, ESTAEX, EXCP, FREEMAIN, GETMAIN, IDENTIFY, GTRACE, IARVSERV,
LINKX, LOAD, MODESET, PHSER, POST, RESERVE, SDUMPX, SETRP, STAX,
STIMER, STIMERM, STORAGE, SYNCHX, TIME, TIMEUSED, TTIMER, VRADATA,
WAIT, WTO, WTOR, and XCTL.

You can invoke the following service in 64-bit addressing mode and may pass
parameters and parameter addresses above 2 gigabytes: IARV64.

2 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Before invoking a service in 64-bit addressing mode, you must inform system
macros, by specifying SYSSTATE AMODE=64, that you are in 64-bit addressing
mode. Only those options that result in calling the system by an SVC or PC may be
invoked in 64-bit addressing mode. Any option that results in calling the system by
a branch-entry may not be invoked in 64-bit addressing mode.

Unless explicitly stated otherwise, you should assume that a given service may not
be invoked in 64-bit addressing mode and cannot accept parameters and parameter
addresses above 2 gigabytes.

For information about 64-bit addressing mode and the 64-bit GPR, see z/OS MVS
Programming: Extended Addressability Guide.

Address Space Control (ASC) Mode
A program can run in either primary ASC mode or access register (AR) ASC mode.
In primary mode, the processor uses the contents of general purpose registers
(GPRs) to resolve an address to a specific location. In AR mode, the processor
uses the contents of ARs as well as the contents of GPRs to resolve an address to
a specific location. See z/OS MVS Programming: Assembler Services Guidefor
more detailed information about AR mode.

Some macros can generate code that is appropriate for programs in either primary
mode or AR mode. These macros check a global symbol set by the SYSSTATE
macro. See “Telling the System about the Execution Environment” on page 5 for
more information. Table 3 on page 17 lists the macros that check the global symbol.

Some services can generate code that is appropriate for programs in primary mode
only. If you write a program in AR mode that invokes one or more services, check
the description in this book for each service your program issues. Unless the
description indicates that a service supports callers in AR mode, the service does
not support callers in AR mode. In this case, use the SAC instruction to change the
ASC mode of your program and issue the service in primary mode.

Whether the caller is in primary or AR ASC mode, the system uses ARs 0-1 and
14-15 as work registers across any service call.

ALET Qualification
The address space where you can place parameters varies with the individual
service:
v All services allow you to place parameters in the primary address space.
v Some services require you to place parameters in the primary address space.
v Some services allow you to place parameters in any address space.

To identify where a service allows parameters to be located, read the individual
service description.

Programs in AR mode that pass parameters must use an access register and the
corresponding general purpose register together (for example, access register 1
and general purpose register 1) to identify where the parameters are located. The
access register must contain an access list entry token (ALET) that identifies the
address space where the parameters reside. The general purpose register must
identify where, within the address space, the parameters reside.

The only ALETs that MVS services typically accept are:

Using the Services 3

v Zero (0), which specifies that the parameters reside in the caller’s primary
address space

v An ALET for a public entry on the caller’s dispatchable unit access list (DU-AL).

v An ALET for a common area data space (CADS)

MVS services do not accept the following ALETs, and you must not attempt to pass
them to a service:

v One (1), which signifies that the parameters reside in the caller’s secondary
address space

v An ALET that is on the caller’s primary address space access list (PASN-AL) that
does not represent a CADS

v An ALET for a private entry on the PASN-AL or the DU-AL.

Throughout, this book uses the term AR/GPR n to mean an access register and its
corresponding general purpose register. For example, to identify access register 1
and general purpose register 1, this book uses AR/GPR 1.

User Parameters
Some macros that you can issue in AR mode include control parameters, user
parameters, or both. Control parameters refer to the macro parameter list, and to
the parameters whose addresses are in the parameter list. Control parameters
control the operation of the macro itself. User parameters are parameters that the
user provides to be passed through to a user routine. For example, the PARAM
parameter on the ATTACHX macro defines user parameters. The ATTACHX macro
passes these parameters to the routine that it attaches. All other parameters on the
ATTACHX macro are control parameters that control the operation of the ATTACHX
macro.

Notes:

1. User parameters are sometimes referred to as problem program parameters.

2. Control parameters are sometimes referred to as system parameters or control
program parameters.

The macros shown in Table 1 allow a caller in AR mode to pass information in the
form of a parameter list (or parameter lists) to another routine. This table identifies
the parameter that receives the ALET-qualified address of the parameter list and
tells you where the target routine finds the ALET-qualified address.

Table 1. Passing User Parameters in AR Mode

Macro Parameter Location of User Parameter List Address

ATTACH/ATTACHX PARAM,VL=1 AR/GPR 1 contains the address of a list of
addresses and ALETs. (See Figure 1 for the
format of the list.)

ESTAEX PARAM SDWAPARM contains the address of an
8-byte area, which contains the address and
ALET of the parameter list.

When a caller in AR mode passes ALET-qualified addresses to the called program
through PARAM,VL=1 on the ATTACH/ATTACHX macro , the system builds a list
formatted as shown in Figure 1 on page 5. The addresses passed to the called
program are at the beginning of the list, and their associated ALETs follow the
addresses. The last address in the list has the high-order bit on to indicate the size

4 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

of the list. For example, Figure 1 shows the format of a list where an AR mode
issuer of ATTACHX codes the PARAM parameter as follows:

PARAM=(A,B,C),VL=1

For information about linkage conventions, see the chapter in z/OS MVS
Programming: Assembler Services Guide.

Telling the System about the Execution Environment
To generate code that is correct for the environment in which the program will run,
some macros need to know one or more of the following characteristics about that
environment:

v The addressing mode (AMODE) at the time the macro is issued

v The ASC mode of the program at the time the macro is issued

v The Architectural level in which the program will run

For macros that are sensitive to their environment, you must use the SYSSTATE
macro to define the environment. During the assembly stage, SYSSTATE sets one
or more global symbols. Later, when the program runs, the macro checks the global
symbols and generates the correct code, which might mean avoiding use of a
z/Architecture instruction or using an access register. Table 3 on page 17 lists MVS
macros and identifies macros that need to know the environmental characteristics.

IBM recommends you issue the SYSSTATE macro before you issue other macros.
Once a program has issued SYSSTATE, there is no need to reissue it, unless the
program switches from one AMODE to another or one ASC mode to another or has
code paths that are isolated according to architecture level. If you switch AMODE or
ASC mode or to a different architecture code path, you should issue SYSSTATE
immediately after the switch to indicate the new state. Without this information, the
system assumes the macro is issued:

v In AMODE other than 64-bit

v In primary ASC mode

v In ESA/390 architectural level

The following table describes the relevant characteristics, the parameter on
SYSSTATE, and the global symbol the macro checks.

Characteristic Parameter on SYSSTATE Global
symbol

AMODE of 64-bit, or either 24-bit or 31-bit AMODE64=YES or NO &SYSAM64

Primary or AR ASC mode ASCENV=P or AR &SYSASCE

@

ALET

@A

@B

@C

GPR1
AR1

0

0

1

ALET A

ALET B

ALET C

Figure 1. Sample User Parameter List for Callers in AR Mode

Using the Services 5

Characteristic Parameter on SYSSTATE Global
symbol

Architectural level of:

v ESA/390

v ESA/390 but includes the ESA/390
architecture items required by OS/390
R10

v z/Architecture

ARCHLVL=0, 1 or 2 &SYSALVL

You can issue the SYSSTATE macro with the TEST parameter in your own
user-written macro to allow your macros to generate code appropriate for their
execution environment.

Callable services do not check the global symbols described in this section. To
determine whether a callable service is sensitive to the AMODE, ASC mode, or the
Architecture level, see the description of the individual callable service.

In early releases of MVS, the SPLEVEL macro performed a function similar to
SYSSTATE. The SPLEVEL macro identifies the level of the operating system, so
that a macro expansion can be tuned based on that level. This is used where
macro expansions changed incompatibly. Because SPLEVEL applies to levels of
the system no longer supported, it is not described in this section.

Specifying a Macro Version Number
Often there is more than one version of a macro, differentiated by additional
parameters or new or expanded function. For example, version 1 of the IXGCONN
macro provides connection to a log stream, while version 2 adds new parameters in
support of resource manager programs. Note that this is different than using the
SPLEVEL macro to select a macro version level to solve problems of downward
compatibility.

You can request a specific version of a macro based on the parameters you need
to use in your application, but you should also be attuned to the storage constraints
of the program. The version of a macro might affect the length of the parameter list
generated when the macro is assembled, because when new parameters are
added to a macro, the parameter list must be large enough to fit them. The size of
the parameter list might grow from release to release of OS/390 and z/OS, perhaps
affecting the amount of storage your program needs.

How to Request a Macro Version Using PLISTVER
Many macros that have one or more versions supply the PLISTVER parameter. For
those that do, use the PLISTVER parameter to request a version of the macro.
PLISTVER is the only parameter allowed on the list form of a macro (MF), and it
determines which parameter list the system generates. PLISTVER is optional. If you
omit it, the system generates a parameter list for the lowest version that will
accommodate the parameters specified. This is the IMPLIED_VERSION default.
Note that on the list form, the default will cause the smallest parameter list to be
created.

You also have the option of coding a specific version number using plistver, or of
specifying MAX:

6 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

v plistver allows you to code a decimal value corresponding to the version of the
macro you require. The decimal value you provide determines the amount of
storage allotted for the parameter list.

v MAX allows you to request that the system generate a parameter list for the
highest version number currently available. The amount of storage allotted for the
parameter list will depend on the level of the system on which the macro is
assembled.

IBM recommends , if your program can tolerate additional growth, that you
always specify PLISTVER=MAX on the list form of the macro. MAX ensures that
the list form parameter list is always long enough to hold whatever parameters
might be specified on the execute form when both forms are assembled using
the save level of the system.

Hints for Using PLISTVER
There are some general considerations that you should keep in mind when
specifying the version of a macro with PLISTVER:

v If PLISTVER is omitted, the macro generates a parameter list of the lowest
version that allows all the parameters specified to be processed.

v If you code PLISTVER=n and then specify any version ‘n+1’ parameter, the
macro will not assemble.

v If you code PLISTVER=n and do not specify any version ‘n’ parameter, the
macro will generate a version ‘n’ parameter list.

v If you are using the standard form of the macro (MF=S), there is no reason you
need to code the PLISTVER parameter.

v Not all macros in OS/390 have the same version numbers. The version numbers
need not be contiguous.

The PLISTVER parameter appears in the syntax diagram and in the parameter
descriptions. Within each macro description, the PLISTVER parameter description
specifies the range of values and lists the parameters applicable for each version of
the macro.

Register Use
Some services require that the caller place information in specific general purpose
registers (GPRs) or access registers (ARs) prior to issuing the service. If a service
has such a requirement, the “Input Register Information” section for the service
provides that information. The section lists only those registers that have a
requirement. If a register is not specified as having a requirement, then the caller
does not have to place any information in that register unless using it in register
notation for a particular parameter, or using it as a base register.

Once the caller issues the service, the system can change the contents of one or
more registers, and leave the contents of other registers unchanged. When control
returns to the caller, each register contains one of the following values or has the
following status:

v The register content is preserved and is the same as it was before the service
was issued.

v The register contains a value placed there by the system for the caller’s use.
Examples of such values are return codes and tokens.

v The system used the register as a work register. Do not assume that the register
content is the same as it was before the service was issued.

Using the Services 7

Note that the system uses ARs 0, 1, 14, and 15 as work registers for every service,
regardless of whether the caller is in primary or AR address space control (ASC)
mode. The system does not use ARs 2 through 13 for any service.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Many macros require that the caller have a program base register and assembler
USING instruction in effect when issuing the macro; that is, the caller must have
program addressability. AR mode programs also require that the AR associated with
the caller’s base GPR be set to zero. IBM recommends the following:

v When issuing a macro, the caller should always have program addressability in
effect.

v When establishing addressability, the caller should use only registers 2 through
12.

Many macros can take advantage of relative branching when they are used with the
IEABRC macro or with SYSSTATE ARCHLVL=1 or SYSSTATE ARCHLVL=2, if they
are running on OS/390 version 2 release 10 or z/OS. If relative branching is used,
the caller might then need addressability only to the static data portion of the
program, and not to the executable code.

Handling Return Codes and Reason Codes
Most of the services described in this book provide return codes and reason codes.
Return and reason codes indicate the outcome of the service in one of the following
ways:

v Successful completion: you do not need to take any action.

v Successful or partially successful completion, with additional information supplied:
you should evaluate the additional information in light of your particular program
and determine if you need to take any action.

v Unsuccessful completion: some type of error has occurred, and you must take
some action to correct the error.

The errors that cause unsuccessful completion fall into three broad categories:

Program errors Errors that your program causes: you can correct
these.

Environmental errors Errors not caused directly by your program; rather,
your program’s request caused a limit to be
exceeded, such as a storage limit, or the limit on
the size of a particular data set. You might or might
not be able to correct these.

System errors Errors caused by the system: your program did
nothing to cause the error, and you probably cannot
correct these.

In some cases, a return or reason code can result from some combination of these
errors.

The return and reason code descriptions for the services in this book indicate
whether the error is a program error, an environmental error, a system error, or

8 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

|
|
|
|
|

some combination. Whenever possible, the return and reason code descriptions
give you a specific action that you can take to fix the error.

IBM recommends that you read all the return and reason codes for each service
that your program issues. You can then design your program to handle as many
errors as possible. When designing your program, you should allow for the
possibility that future releases of MVS might add new return and reason codes to a
service that your program issues.

Handling Program Errors
The actions to take in the case of program errors are usually straightforward.
Typical examples of program errors are:

1. Breaking one of the rules of the service. For example:

v Passing parameters that are either in the wrong format or not valid

v Violating one of the environment requirements (addressing mode, locking
requirements, dispatchable unit mode, and so on)

v Providing insufficient storage for information to be returned by the system.

2. Causing errors related to the parameter list. For example:
v Coding an incorrect combination of parameters
v Coding one or more parameters on the service incorrectly
v Inadvertently overlaying an area of the parameter list storage
v Inadvertently destroying the pointer to the parameter list.

3. Requesting a service or function for which the calling program is not authorized,
or which is not available on the system on which the program is running.

In each of the first two cases, you can correct your program. For completeness, the
return and reason code descriptions give you specific actions to perform, even
when it might seem obvious what the action should be.

In the third case, you might have to contact your system administrator or system
programmer to obtain the necessary authorization, or to request that the service or
function be made available on your system, and the return or reason code
description asks you to take that step.

Note: Generally, the system does not take dumps for errors that your program
causes when issuing a system service. If you require such a dump, then it is
your responsibility to request one in your recovery routine. See the section
on providing recovery in z/OS MVS Programming: Authorized Assembler
Services Guide for information about writing recovery routines.

Handling Environmental and System Errors
With environmental errors, often your first action should be to rerun your program or
retry the request one or more times. The following are examples of environmental
errors where rerunning your program or retrying the request is appropriate:

v The request being made through the service exceeds some internal system limit.
Sometimes, rerunning your program or retrying the request results in successful
completion. If the problem persists, it might be an indication of a larger problem
requiring you to consult your system programmer, or possibly IBM support
personnel. Your system programmer might be able to tune the system or cancel
users so that the limit is no longer exceeded.

v The request exceeds an installation-defined limit. If the problem persists, the
action might be to contact your system programmer and request that a
specification in an installation exit or parmlib member be modified.

Using the Services 9

v The system cannot obtain storage, or some other resource, for your request. If
the problem persists, the action might be to check with the operator to see if
another user in the installation is causing the problem, or to see if the entire
installation is experiencing storage constraint problems.

You might be able to design your program to anticipate certain environmental errors
and handle them dynamically.

With system errors, as with environmental errors, often your first action should be to
rerun your program or retry the request one or more times. If the problem persists,
you might have to contact IBM support personnel.

Whenever possible for environmental and system errors, the return or reason code
description gives you either a specific action you can take, or a list of recommended
actions you can try.

For some errors, providing a specific action is not possible, because the action you
should take depends on your particular application, and on what is happening in
your installation. In those cases, the return or reason code description gives you
one or more possible causes of the error to help you to determine what action to
take.

Some system errors result in return and reason codes that are provided for IBM
diagnostic purposes only. In these cases, the return or reason code description
asks you to record the information and provide it to the appropriate IBM support
personnel.

Using X-Macros
Some MVS services support callers in both primary and AR ASC mode. When the
caller is in AR mode, macros must generate larger parameter lists; the increased
size of the list reflects the addition of ALETs to qualify addresses, as described
under “ALET Qualification” on page 3. For some MVS macros, two versions of a
particular macro are available: one for callers in primary mode and one for callers in
AR mode. The name of the macro for the AR mode caller is the same as the name
of the macro for primary mode callers, except the AR mode macro name ends with
an “X”. This book refers to these macros as X-macros .

The authorized X-macros are:
v ATTACHX
v ESTAEX
v SDUMPX
v SYNCHX

The only way these macros know that a caller is in AR mode is by checking the
global symbol that the SYSSTATE macro sets. Each of these macros (and
corresponding non-X-macro) checks the symbol. If SYSSTATE ASCENV=AR has
been issued, the macro issues code that is valid for callers in AR mode. If it has not
been issued, the macro generates code that is not valid for callers in AR mode.
When your program returns to primary mode, use the SYSSTATE ASCENV=P
macro to reset the global symbol.

IBM recommends that you use the X-macro regardless of whether your program is
running in primary or AR mode. However, you should consider the following before
deciding which macro to use:

10 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

The rules for using all X-macros, except ESTAEX, are:

v Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary
mode. Some parameters on the non-X-macros are not valid for callers in AR
mode. Check the macro descriptions for these exceptions.

v Callers in AR mode should issue the X-macros.

If a caller in AR mode issues the non-X-macro, the system substitutes the
X-macro and sends a message describing the substitution.

IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, or your program requires a branch
entry. In these cases, you should use ESTAE.

Macro Forms
You can code most macros in three forms: standard, list, and execute. Some
macros also have a modify form. When you code a macro, you use the MF
parameter to select one of the forms. The list, execute and modify forms are for
reenterable programs that need to change values in the parameter list of the macro.
The standard form is for programs that are not reenterable, or for programs that do
not change values in the parameter list.

When a program wants to change values in the parameter list of a macro, it can
make the change dynamically.

However, using the standard form and changing the parameter list dynamically
might cause errors. For example, after storing a new value into the inline, standard
form of the parameter list, a reenterable program operating under a given task
might be interrupted by the system before the program can invoke the macro. In a
multiprogramming environment, another task can use the same reenterable
program, and that task might change the inline parameter list again before the first
task regains control. When the first task regains control, it invokes the macro.
However, the inline parameter list now has the wrong values.

Through the use of the different macro forms, a program that runs in a
multiprogramming environment can avoid errors related to reenterable programs.
The techniques required for using the macro forms, however, are different for some
macros, called alternative list form macros, than for most other macros. For the
alternative list form macros, the list form description notes that different techniques
are required and refers you to the information under “Alternative List Form Macros”
on page 12.

Conventional List Form Macros
With conventional list form macros, you can use the macro forms as follows:

1. Use the list form of the macro, which expands to the parameter list. Place the
list form in the section of your program where you keep non-executable data,
such as program constants. Do not code it in the instruction stream of your
program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
some virtual storage.

3. Code a move character instruction that moves the parameter list from its
non-executable position in your program into the virtual storage area that you
obtained.

Using the Services 11

4. For macros that have a modify form, you can code the modify form of the macro
to change the parameter list. Use the address parameter of the modify form to
reference the parameter list in the virtual storage area that you obtained. Thus,
the parameter list that you change is the one in the virtual storage area
obtained by the GETMAIN or STORAGE macro.

5. Invoke the macro by issuing the execute form of the macro. Use the address
parameter of the execute form to reference the parameter list in the virtual
storage area that you obtained.

With this technique, the parameter list is safe even if the first task is interrupted and
a second task intervenes. When the program runs under the second task, it cannot
access the parameter list in the virtual storage of the first task.

Alternative List Form Macros
Certain macros, called alternative list form macros, require a somewhat different
technique for using the list form. With these macros, you do not move the area
defined by the list form into virtual storage that you have obtained; instead, you
place the area defined by the list form into a DSECT. Also, it is the list form, not the
execute form, that you use to specify the address parameter that identifies the
address of the storage for the parameter list. Note that no modify form is available
for these macros.

You can use the macro forms for the alternative list form macros as follows:

1. Use the list form of the macro to define an area of storage that the execute form
can use to store the parameters. As with other macros, do not code the list form
in the instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
virtual storage for the list form expansion.

3. Place the area defined by the list form into a DSECT that maps a portion of the
virtual storage you obtained.

4. Invoke the macro by issuing the execute form of the macro. The address
parameter specified on the list form references the parameter list in the virtual
storage area that you obtained.

Coding the Macros
In this book, each macro description includes a syntax table near the beginning of
the macro description. The table shows how to code the macro. The syntax table
does not explain the meanings of the parameters; the meanings are explained in
the parameter descriptions that follow the syntax table.

The syntax tables assume that the standard begin, end, and continue columns are
used. Thus, column 1 is assumed as the begin column. To change the begin, end,
and continue columns, use the ICTL instruction to establish the coding format you
want to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see HLASM Language Reference.

Figure 2 shows a sample macro, TEST, and summarizes all the coding information
that is available for it. The table is divided into three columns, A, B, and C.

12 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

v Column A and Column B contain those parameters that are allowed for the
macro. Column A contains those parameters that are required; column B contains
those parameters which are optional.

v If a single line appears, as shown in A1 and B1, then that is the only available
choice for the particular parameter.

v If two or more lines appear together, as shown in A2 and B2, the parameters on
those lines are mutually exclusive, that is, you can code any one of those
parameters.

v A further distinction is made between mandatory and optional parameters. The
parameter descriptions that follow the syntax table clearly identify those
parameters which are optional.

v The third column, C, provides additional information about coding the macro.

When substitution of a variable is required in column C, the following classifications
are used:

Variable Classification

Symbol Any symbol valid in the assembler language. The symbol can be as
long as the supported maximum length of a name entry in the
assembler you are using.

Decimal digit Any decimal digit up to and including the value indicated in the
parameter description. If both symbol and decimal digit are
indicated, an absolute expression is also allowed.

A B C

A1

A2

B1

B2

name name:

TEST

b One or more blanks must precede TEST.

b One or more blanks must follow TEST.

MATH
HIST
GEOG

,DATA=

,LNG=

symbol. Begin in column 1.name

data length data length: symbol or decimal digit, with a maximum value of 256.

,FMT=HEX
,FMT=DEC
,FMT=BIN

Default: FMT=HEX

,PASS=
Default: PASS=65

,grade grade: symbol, decimal digit, or register (1) or (2) - (12).

symbol, decimal digit, or register (1) or (2) - (12).

RX-type address, or register (2) - (12)data addr data addr:

value value:

Figure 2. Sample Macro Syntax Diagram

Using the Services 13

Register (2)-(12)
One of general purpose registers 2 through 12, specified within
parentheses, previously loaded with the right-adjusted value or
address indicated in the parameter description. You must set the
unused high-order bits to zero. You can designate the register
symbolically or with an absolute expression.

Register (0) General purpose register 0, previously loaded with the
right-adjusted value or address indicated in the parameter
description. You must set the unused high-order bits to zero.
Designate the register as (0) only.

Register (1) General purpose register 1, previously loaded with the
right-adjusted value or address indicated in the parameter
description. You must set the unused high-order bits to zero.
Designate the register as (1) only.

Register (15) General purpose register 15, previously loaded with the
right-adjusted value or address indicated in the parameter
description. You must set the unused high-order bits to zero.
Designate the register as (15) only.

RX-type address
Any address that is valid in an RX-type instruction (for example,
LA).

RS-type address
Any address that is valid in an RS-type instruction (for example,
STM).

RS-type name Any name that is valid in an RS-type instruction (for example,
STM).

A-type address
Any address that can be written in an A-type address constant.

Default A value that is used in default of a specified value; that is, the value
the system assumes if the parameter is not coded.

Use the parameters to specify the services and options to be performed, and write
them according to the following rules:

v If the selected parameter is written in all capital letters (for example, MATH,
HIST, or FMT=HEX), code the parameter exactly as shown.

v If the selected parameter is written in italics (for example, grade), substitute the
indicated value, address, or name.

v If the selected parameter is a combination of capital letters and italics separated
by an equal sign (for example, DATA=data addr), code the capital letters and
equal sign as shown, and then make the indicated substitution for the italics.

v Read the table from top to bottom.

v Code commas and parentheses exactly as shown.

v Positional parameters (parameters without equal signs) appear first; you must
code them in the order shown. You may code keyword parameters (parameters
with equal signs) in any order.

v If you select a parameter, read the third column before proceeding to the next
parameter. The third column often contains coding restrictions for the parameter.

14 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Continuation Lines
You can continue the parameter field of a macro on one or more additional lines
according to the following rules:

v Enter a continuation character (not blank, and not part of the parameter coding)
in column 72 of the line.

v Continue the parameter field on the next line, starting in column 16. All columns
to the left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the
parameter field through column 71, with no blanks, and continue in column 16 of
the next line; or truncate the parameter field by a comma, where a comma normally
falls, with at least one blank before column 71, and then continue in column 16 of
the next line. Figure 3 shows an example of each method.

Coding the Callable Services
A callable service is a programming interface that uses the CALL macro to access
system services. To code a callable service, code the CALL macro followed by the
name of the callable service, and a parameter list; for example:

CALL service,(parameter list)

Table 2 shows the syntax diagram for the sample callable service SCORE.

Table 2. Sample Callable Service Syntax Diagram

CALL SCORE

,(test_type
,level
,data
,format_option
,return_code)

Considerations for coding callable services are:

v You must code all the parameters in the parameter list because parameters are
positional in a callable service interface. That is, the function of each parameter
is determined by its position with respect to the other parameters in the list.
Omitting a parameter, therefore, assigns the omitted parameter’s function to the
next parameter in the list.

v You must place values explicitly into all input parameters, because callable
services do not set default values.

NAME 1

NAME 2 OP2

OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAND5,OPERAND6,OPX
ERAND7
OPERAND1,OPERAND2
OPERAND3,OPERAND4,
OPERAND5,OPERAND6,OPERAND7

THIS IS ONE WAY
THIS IS ANOTHER WAY X

X

1 1610 44 72

Figure 3. Continuation Coding

Using the Services 15

v You can use the list and execute forms of the CALL macro to preserve your
program’s reentrancy.

Including Equate (EQU) Statements
IBM supplies sets of equate (EQU) statements for use with some callable services.
These statements, which you may optionally include in your source code, provide
constants for use in your program. IBM provides the statements as a programming
convenience to save you the trouble of coding the definitions yourself.

Note: Check the “Programming Requirements” section of the individual service
description to determine if the equate statements are available for the
callable service you are using. If the equate statements are available, that
section will also provide a list of the statements that are provided, along with
a description of how to include them in your program.

Link-Editing Linkage-Assist Routines
Linkage-assist routines provide the connection between your program and the
system services that your program requests. When using callable services, link-edit
the appropriate linkage-assist routines into your program module so that, during
execution, the linkage-assist routines can resolve the address of, and pass control
to, the requested system services. You can also dynamically link to linkage-assist
routines as an alternative to link-editing. For example, issue the LOAD macro for
the linkage-assist routine, then issue a CALL to the loaded addresses.

To invoke the linkage-editor or binder, code JCL as in the following example:

Note: Omitting NCAL from the linkedit parameters (as the example shows) and
specifying SYS1.CSSLIB in the //SYSLIB statement, as shown, causes the
addresses of all required linkage-assist routines to be automatically resolved.
This statement saves you the trouble of having to specify individual
linkage-assist routines in INCLUDE statements.

Service Summary
Table 3 on page 17 lists services described in the following:
v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
v z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG
v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

For each service, the table indicates:
v Whether a program in AR ASC mode can issue the service

//userid JOB ’accounting-info’,’name’,CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTEP EXEC PGM=HEWL,
// PARM=’LIST,LET,XREF,REFR,RENT’
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSN=userid.LOADLIB,DISP=OLD
//SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJLIB DD DSN=userid.OBJLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD *
INCLUDE OBJLIB(userpgm)
ENTRY userpgm
NAME userpgm(R)

/*

16 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

v Whether a program in cross memory mode can issue the service
v Whether the macro checks the SYSSTATE global variable
v Whether the macro can be issued in 64-bit addressing mode.

Notes:

1. A program running in primary ASC mode when PASN=SASN=HASN can issue
any of the services listed in the table.

2. Cross memory mode means that at least one of the following conditions is true:

PASN¬=SASN The primary address space (PASN) and the
secondary address space (SASN) are different.

PASN¬=HASN The primary address space (PASN) and the
home address space (HASN) are different.

SASN¬=HASN The secondary address space (SASN) and the
home address space (HASN) are different.

For more information about functions that are available to programs in cross
memory mode, see z/OS MVS Programming: Extended Addressability Guide.

3. Callable services do not check the SYSSTATE or SPLEVEL global variables.

Table 3. Service Summary

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

ALESERV Yes Yes No No

ASCRE Yes Yes Yes No

ASDES Yes Yes Yes No

ASEXT Yes Yes No No

ATSET No Yes No No

ATTACH Yes (See note 1
on page 24)

No Yes No

ATTACHX Yes No Yes Yes

AXEXT No Yes No No

AXFRE No Yes No No

AXRES No Yes No No

AXSET No Yes No No

BPXEKDA Yes No Yes No

BPXESMF Yes No Yes No

CALLDISP No Yes No Yes

CALLRTM No Yes (See note 2
on page 24)

No No

CHANGKEY No Yes No No

CIRB No No No No

CMDAUTH No No No No

COFCREAT Yes Yes Yes No

COFDEFIN Yes Yes Yes No

COFIDENT Yes Yes Yes No

COFNOTIF Yes Yes Yes No

Using the Services 17

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

COFPURGE Yes Yes Yes No

COFREMOV Yes Yes Yes No

COFRETRI Yes Yes Yes No

COFSDONO No No Yes No

CONFCHG No No Yes No

CPF No No No No

CPOOL No Yes No No

CSRSI No Yes No No

CSRUNIC Yes Yes No No

CSVAPF Yes (See note 11
on page 24)

Yes (See note
12 on page 24)

Yes No

CSVDYNEX Yes (See note
13 on page 24)

Yes (See note
14 on page 24)

Yes No

CTRACE No No Yes No

CTRACECS Yes No Yes No

CTRACEWR Yes Yes Yes No

DATOFF Yes No No No

DEQ No No No Yes

DIV Yes No Yes No

DOM No No No Yes

DSPSERV Yes Yes Yes Yes

DYNALLOC No No No Yes

ENFREQ No No No No

ENQ No No No Yes

ESPIE No No No Yes

ESTAE (See
note 3 on page
24)

No No Yes No

ESTAEX Yes Yes Yes Yes

ETCON No Yes No No

ETCRE No Yes No No

ETDEF Yes Yes No No

ETDES No Yes No No

ETDIS No Yes No No

EVENTS No No No No

EXTRACT No No No No

FESTAE No No No No

FREEMAIN Yes (See note 4
on page 24)

Yes Yes Yes

GETDSAB No No Yes No

18 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

GETMAIN Yes (See note 4
on page 24)

Yes Yes Yes

GQSCAN No Yes No No

GTRACE No Yes No Yes

HSPSERV Yes Yes (See note 5
on page 24)

(See note 6 on
page 24)

No

IARR2V Yes Yes No No

IARSUBSP Yes Yes Yes No

IARVSERV Yes Yes Yes No

IARV64 Yes Yes Yes Yes

IAZXJSAB Yes Yes (See note
15 on page 24)

Yes No

IEAARR Yes Yes Yes No

IEALSQRY Yes Yes Yes No

IEAMRMF3 No Yes No No

IEAMSCHD Yes Yes Yes No

IEANTCR Yes Yes N/A No

IEANTDL Yes Yes N/A No

IEANTRT Yes Yes N/A No

IEARBUP Yes Yes Yes No

IEATDUMP Yes No Yes No

IEAVAPE No Yes No No

IEAVDPE No Yes No No

IEAVPSE No Yes No No

IEAVRLS No Yes No No

IEAVRPI No Yes No No

IEAVTPE No Yes No No

IEAVXFR No Yes No No

IEEQEMCS Yes Yes Yes No

IEEVARYD No No Yes No

IEFPPSCN No No Yes No

IEFQMREQ No No No No

IEFSSI Yes No No No

IEFSSVT Yes No No No

IEFSSVTI Yes Yes No No

IOSADMF No No Yes No

IOSCAPF No Yes (See note 7
on page 24)

Yes No

IOSCAPU Yes Yes (See note 7
on page 24)

Yes No

Using the Services 19

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

IOSCDR No No Yes No

IOSCHPD Yes Yes Yes No

IOSCMXA No Yes (See note 7
on page 24)

Yes No

IOSCMXR No Yes (See note 7
on page 24)

Yes No

IOSDCXR No Yes (See note 7
on page 24)

Yes No

IOSENQ Yes Yes Yes No

IOSINFO No No No No

IOSLOOK No No No No

IOSPTHV No No Yes No

IOSUPFA No Yes Yes No

IOSUPFR No Yes Yes No

IOSWITCH Yes Yes Yes No

ISGLCRT No Yes N/A No

ISGLOBT No Yes N/A No

ISGLREL No Yes N/A No

ISGLPRG No Yes N/A No

ITTFMTB No No No No

ITZXFILT No Yes Yes No

IWMCLSFY No Yes Yes No

IWMCONN No Yes Yes No

IWMDISC No Yes Yes No

IWMECQRY No Yes Yes No

IWMECREA No Yes Yes No

IWMEDELE No Yes Yes No

IWMMABNL No Yes No No

IWMMCHST No Yes No No

IWMMCREA No Yes Yes No

IWMMDELE No Yes Yes No

IWMMEXTR No Yes Yes No

IWMMINIT No Yes No No

IWMMNTFY No Yes Yes No

IWMMRELA No Yes Yes No

IWMMSWCH No Yes Yes No

IWMMXFER No Yes No No

IWMPQRY Yes Yes Yes No

IWMRCOLL Yes Yes Yes No

20 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

IWMRPT No Yes Yes No

IWMRQRY Yes Yes Yes No

IWMSRDRS No Yes Yes No

IWMSRSRG No Yes Yes No

IWMSRSRS No Yes Yes No

IWMWMCON No Yes Yes No

IWMWQRY Yes Yes Yes No

IWMWQWRK No Yes Yes No

IXCCREAT Yes Yes Yes No

IXCDELET Yes Yes Yes No

IXCJOIN Yes No Yes No

IXCLEAVE Yes No Yes No

IXCMG Yes Yes Yes No

IXCMOD Yes Yes Yes No

IXCMSGI Yes No Yes No

IXCMSGO Yes Yes Yes No

IXCQUERY Yes Yes Yes No

IXCQUIES Yes No Yes No

IXCSETUS Yes Yes Yes No

IXCTERM Yes Yes Yes No

LLACOPY No No Yes No

LOAD Yes No No Yes

LOADWAIT No Yes Yes No

LOCASCB Yes Yes Yes No

LXFRE No Yes No No

LXRES No Yes No No

MCSOPER Yes No Yes No

MCSOPMSG Yes No Yes No

MGCR No No No No

MGCRE No No No No

MIHQUERY Yes No Yes No

MODESET No Yes No Yes

NIL No No No No

NMLDEF No No No No

NUCLKUP No No No No

OIL No No No No

OUTADD No No No No

OUTDEL No No No No

Using the Services 21

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

PCLINK No Yes No No

PGANY No No No No

PGFIX No Yes No No

PGFIXA No No No No

PGFREE No Yes No No

PGFREEA No No No No

PGSER Yes (See note 8
on page 24)

Yes (See note 8
on page 24)

No Yes

POST No Yes No Yes

PTRACE No Yes No No

PURGEDQ No No No No

QEDIT No No No No

RESERVE No No No Yes

RESMGR Yes Yes No No

RESUME No Yes No No

RISGNL No Yes No No

SCHEDIRB Yes No Yes No

SCHEDULE Yes Yes Yes No

SCHEDXIT No Yes No No

SDUMP Yes (See note 1
on page 24)

Yes (See note 9
on page 24)

Yes No

SDUMPX Yes Yes (See note 9
on page 24)

Yes Yes

SETFRR Yes Yes Yes No

SETLOCK Yes Yes Yes No

SETRP Yes Yes Yes Yes

SJFREQ No Yes No No

SPIE No No No No

SPOST No No No No

SRBSTAT No Yes No No

SRBTIMER No No No No

STATUS Yes Yes No No

STORAGE Yes Yes No Yes

SUSPEND No Yes No No

SVCUPDTE No No No No

SWAREQ No No No No

SWBTUREQ No No No No

SYNCH Yes (See note 1
on page 24)

No Yes No

SYNCHX Yes No Yes Yes

22 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

SYSEVENT No No No No

TCBTOKEN Yes Yes No No

TCTL No No No No

TESTAUTH No No No No

TIMEUSED Yes (See note
10 on page 24)

Yes No Yes

T6EXIT No No No No

UCBINFO Yes Yes Yes No

UCBLOOK Yes Yes Yes No

UCBPIN Yes Yes Yes No

UCBSCAN Yes Yes Yes No

VSMLIST No Yes No No

VSMLOC No Yes No No

VSMREGN No Yes No No

WAIT No Yes No Yes

WTL No No No No

WTO No No No Yes

WTOR No No No Yes

Using the Services 23

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

Notes:

1. Primary mode callers can use either macro in the following macro pairs:
ATTACH or ATTACHX
SDUMP or SDUMPX
SYNCH or SYNCHX

IBM recommends that programs in AR ASC mode use the X-macros (ATTACHX,
SDUMPX, and SYNCHX). If, however, a program in AR mode issues ATTACH,
SDUMP, or SYNCH after issuing SYSSTATE ASCENV=AR, the system substitutes the
corresponding X-macro and issues a message telling you that it made the substitution.

2. CALLRTM TYPE=MEMTERM can be issued in cross memory mode. For CALLRTM
TYPE=ABTERM, see the CALLRTM macro description.

3. The only programs that can use ESTAE are programs that are in primary mode with
(PASN=SASN=HASN).

IBM recommends you always use ESTAEX unless your program and your recovery
routine are in 24-bit addressing mode, or your program requires a branch entry. In
these cases, you should use ESTAE.

4. IBM recommends that AR mode callers use the STORAGE macro instead of using
GETMAIN or FREEMAIN.

5. For HSPSERV SREAD and HSPSERV SWRITE, PASN=HASN=SASN for a
non-shared standard hiperspace for which an ALET is not used (that is, the HSPALET
parameter is omitted).

6. If you use the HSPALET parameter, the HSPSERV macro checks SYSSTATE.

7. If the input UCB is captured, the IOSCAPF, IOSCMXA, IOSCMXR, and IOSDCXR
macros can be issued in cross memory mode only if the UCB is captured in the
primary address space. IOSCAPU CAPTOACT without the ASID parameter also can
be issued in cross memory mode if the UCB was captured in the primary address
space. IOSCAPU CAPTUCB and IOSCAPU UCAPTUCB cannot be issued in cross
memory mode.

8. PGSER can be issued in AR ASC mode only if you specify BRANCH=Y. PGSER can
be issued in cross memory mode only if you specify BRANCH=Y or
BRANCH=SPECIAL.

9. Both SDUMP and SDUMPX can be issued in cross memory mode only if you specify
BRANCH=YES.

10. Only TIMEUSED LINKAGE=SYSTEM can be issued in AR ASC mode. TIMEUSED
LINKAGE=BRANCH cannot be issued in AR ASC mode.

11. For a QUERY request, CSVAPF can be issued only in primary mode. For all other
requests, CSVAPF can be issued in primary or AR mode.

12. For CSVAPF with the ADD, DELETE, and DYNFORMAT requests, PASN = HASN =
SASN. For CSVAPF with the QUERY, QUERYFORMAT, and LIST requests, any PASN,
any HASN, any SASN.

13. For a QUERY or a CALL request with FASTPATH=YES, CSVDYNEX can be issued
only in primary mode. For all other requests, CSVDYNEX can be issued in primary or
AR mode.

14. For CSVDYNEX CALL, RECOVER, and QUERY requests, any PASN, any HASN, any
SASN. For all other requests, PASN=HASN=SASN.

15. When the caller of the IAZXJSAB macro specifies the ASCB parameter, any PASN,
any HASN, any SASN; otherwise, PASN=HASN is required.

24 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SETFRR — Set Up Functional Recovery Routines

Description
The SETFRR macro gives authorized programs the ability to define their recovery in
the FRR (functional recovery routine) LIFO stack, which is used during processing
of the system recovery manager. Any program function can use SETFRR to define
its own unique recovery environment.

The SETFRR macro can be used to add, delete, or replace FRRs in the LIFO
stack, or to purge all FRRs in the stack. The macro also optionally returns to the
user the address of a parameter area that is eventually passed to the FRR when an
error occurs. The parameter area can be used to keep information that might be
useful to the FRR. The recovery and retry routines execute in the same addressing
mode as the issuer of the macro.

z/OS MVS Programming: Authorized Assembler Services Guide describes the
interface to an FRR and contains guidelines for writing an FRR.

Environment
The requirements for the caller are:

Minimum authorization : Supervisor state and PSW key 0
Dispatchable unit mode : Task or SRB (see note below)
Cross memory mode : Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode : Primary, secondary or access register (AR)
Interrupt status : Enabled or disabled for I/O and external interrupts (see note

below)
Locks : The caller may hold locks, but is not required to hold any.

(See note below.)
Control parameters : None.

Note: If the caller does not specify the EUT=YES parameter, the caller must be
one of the following:
v Holding a lock
v Disabled for I/O and external interrupts
v In SRB mode.

Programming Requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
issuing SETFRR. SYSSTATE ASCENV=AR tells the system to generate code
appropriate for AR mode.

For primary mode callers, the parameter list you specify on the PARMAD parameter
must be in the primary address space. For AR mode callers, this parameter list can
be located in any address space.

The caller must include the following mapping macros:
v IHAFRRS
v IHAPSA

© Copyright IBM Corp. 1988, 2002 25

Restrictions
None.

Input Register Information
Before issuing the SETFRR macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the contents of the general purpose registers
(GPRs) and access registers (ARs) are unchanged, with the exception of the GPRs
you specify on the WRKREGS parameter, which are used by the system.

Performance Implications
None.

Syntax
The SETFRR macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SETFRR.

SETFRR

� One or more blanks must follow SETFRR.

A,FRRAD=FRR addr FRR addr: A-type address, or register (2) - (12).
R,FRRAD=FRR addr
D
P

,WRKREGS=(reg1,reg2) reg1: Decimal digits 1-15.
reg2: Decimal digits 1-15.

,PARMAD=parm area addr parm area addr: A-type address, or register (2) - (12).
Note : This parameter may only be specified with A or R above.

,CANCEL=YES Default : CANCEL=YES
,CANCEL=NO

,EUT=YES

,MODE= Default : MODE=HOME
(
FULLXM
PRIMARY
HOME

SETFRR Macro

26 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,
LOCAL
)

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

A,FRRAD=FRRAD addr
R,FRRAD=FRRAD addr
D
P Specifies the operation to be performed on the FRR LIFO stack:

A An FRR address is to be added to the stack.

R The FRR address last added to the stack is to be replaced by another
FRR address.

D The FRR address last added to the stack is to be deleted.

P All entries in the stack are to be purged.

FRRAD specifies the address of a fullword containing the FRR address that is
to be added or replaced. The parameter specifies the FRR address in a register
or specifies the address of a storage location containing the FRR address.

Note: When an FRR wants to deactivate itself, IBM recommends that the
FRR issue SETRP with REMREC=YES rather than issuing SETFRR D.
See the chapter on providing recovery in z/OS MVS Programming:
Authorized Assembler Services Guide for an explanation.

,WRKREGS=(reg1,reg2)
Specifies two unique general purpose registers to be used as work registers by
the system.

,PARMAD=parm area addr
Specifies the address of a fullword to receive the address of the 24-byte
parameter area initialized to zeros and provided by the system to the issuer of
SETFRR. This 24-byte parameter area is in key 0 storage. If a register is
specified, the address of the 24-byte parameter area is placed in the register.
This parameter area is associated with the FRR address that has either been
added to or has replaced an FRR address on the stack. This parameter area is
passed to the FRR when an error occurs.

,CANCEL=YES
,CANCEL=NO

Specifies whether you want to allow the recovery routine to be interrupted by
cancel or detach processing.

To allow a recovery routine to be interrupted, specify CANCEL=YES.

To prevent a recovery routine from being interrupted, specify CANCEL=NO. If a
cancel or detach is attempted against a recovery routine for which you have
specified CANCEL=NO, MVS defers cancel and detach processing until the
recovery routine returns control to the system.

SETFRR Macro

SETFRR — Set Up Functional Recovery Routines 27

Usage Notes:

1. If a recovery routine that runs under the CANCEL=NO option can be called
by an unauthorized program running under the same task, IBM
recommends that you specify ASYNCH=NO for each ESTAE(X) macro that
the recovery routine issues. This also includes any ESTAE(X) macros
issued by programs that the recovery routine calls.

2. If a recovery routine running under the CANCEL=NO option calls an
unauthorized program, cancel and detach processing is also deferred for the
called program.

,EUT=YES
Used only with A and R, specifies that the new FRR can be used in any
environment. EUT=YES is used by routines that are not certain of their
environment; for example, a routine that can be called by an SRB or by a task
that is executing enabled and might not hold any locks. While the FRR remains
in effect, no SVCs can be issued, no new asynchronous exits are dispatched,
and no vector instructions can be executed.

,MODE=options
Specifies the environment in which the FRR is to get control and also,
optionally, identifies the FRRs that free critical resources. The normal or
expected addressing environment is identified by FULLXM, PRIMARY, or
HOME. Specify LOCAL to enable the FRR to be entered in a restricted
addressing environment for freeing critical resources. Parentheses are not
needed if only one option is chosen.

FULLXM
Specifies that the FRR must be entered in the same cross memory
environment that existed when the SETFRR was issued.

PRIMARY
Specifies that the FRR must be entered in primary addressing mode with
both the PASID and SASID the same as the PASID that existed when the
SETFRR was issued, the home address space must be unchanged, and
the PSW key mask must be the same as when the SETFRR was issued.

HOME
Specifies that the FRR must be entered in primary addressing mode with
PASID=SASID=HASID, and the PSW key mask either the same as that at
the time of the error for SRB mode, or the task storage protect key for TCB
mode.

If neither FULLXM, PRIMARY, nor HOME is coded, HOME is the default.

LOCAL
Specifies that the FRR frees a critical local resource. If the FRR cannot be
entered in its normal addressing environment then it must be entered in
LOCAL restricted addressing environment to free resources.

For the FRR to be entered in LOCAL restricted addressing environment, a
local lock must be held.

If it cannot be entered either as an FRR or as a resource manager, the
FRR is skipped.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

SETFRR Macro

28 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

ABEND Codes
SETFRR might abnormally end with abend code X'07D'. See z/OS MVS System
Codes for an explanation and programmer response for this code.

Return and Reason Codes
None.

Example 1
Add an FRR to the FRR stack and return the address of the parameter list to the
issuer of the SETFRR. The FRR address contained in register (R5) is placed on the
FRR stack in the next available FRR entry. On return, register (R2) contains the
address of the parameter list associated with this FRR entry. Registers R3 and R4
are work registers used by the system.
SETFRR A,FRRAD=(R5),PARMAD=(R2),WRKREGS=(R3,R4)

Example 2
Delete the last FRR added to the FRR stack. Registers 1 and 6 are work registers
used by the system.
SETFRR D,WRKREGS=(1,6)

SETFRR Macro

SETFRR — Set Up Functional Recovery Routines 29

SETFRR Macro

30 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SETLOCK — Control Access to Serially Reusable Resources

Description
Use the SETLOCK macro to control access to serially reusable resources. Each
kind of serially reusable resource is assigned a separate lock.

SETLOCK can do the following:
v Obtain a specified lock
v Release a specified lock
v Test a specified lock or determine if the lock is held on the caller’s processor.

For information on using this macro on an MVS/SP version other than the current
version, see “Compatibility of MVS Macros” on page 1.

Locks are discussed in the “Serialization” chapter in z/OS MVS Programming:
Authorized Assembler Services Guide.

Note
The OBTAIN, RELEASE, and TEST options of the SETLOCK macro have the
same environmental specifications, programming requirements, restrictions,
register information, and performance implications described below, except
where noted in the explanations of each option.

Environment
The requirements for the caller are:

Minimum authorization : Supervisor state, PSW key 0
Dispatchable unit mode : Task or SRB
Cross memory mode : Any
AMODE: 24- or 31-bit
ASC mode : Primary or access register (AR)
Interrupt status : Enabled or disabled for I/O and external interrupts. The caller

cannot be disabled when unconditionally requesting a
suspend lock.

Locks : LOCAL or CML lock must be held to obtain the CMS lock;
otherwise, the caller may hold locks, but is not required to
hold any. Only locks lower in the hierarchy than the lock
currently being requested may be held at the time of
invocation.

Control parameters : None.

Programming Requirements
v Before you invoke the SETLOCK macro in access register mode, issue

SYSSTATE ASCENV=AR.

v The caller must include the IHAPSA mapping macro.

v Before issuing an OBTAIN request for a CML lock, establish the target ASCB as
either the primary or secondary address space.

Restrictions
None.

© Copyright IBM Corp. 1988, 2002 31

Input Register Information
Before issuing the SETLOCK macro, the caller must ensure that the following
general purpose register (GPR) contains the specified information:

Register Contents
13 A 5-word save area if REGS=SAVE is specified, or an 18-word

save area if REGS=STDSAVE is specified.

Output Register Information
For an OBTAIN or RELEASE request, when the REGS parameter is not specified,
the contents of the general purpose registers (GPRs) after control returns to the
caller are as follows:

Register Contents
0-10 Unchanged
11-12 Used as work registers by the system
13 Return code
14 Used as a work register by the system
15 Unchanged

For an OBTAIN or RELEASE request when the REGS parameter is specified, see
the description of the REGS parameter for information on GPR usage.

For a TEST request, the contents of the GPRs after control returns to the caller are
as follows:

Register Contents
0-1 Unchanged.
2-12 If one of these registers is specified on the LOCKHLD parameter,

that register is used as a work register by the system; otherwise,
registers 2-12 are unchanged.

13-14 Unchanged.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

SETLOCK OBTAIN

Syntax
The OBTAIN option of SETLOCK macro is written as follows:

SETLOCK Macro

32 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SETLOCK.

SETLOCK

� One or more blanks must follow SETLOCK.

OBTAIN

,TYPE=CPU
,TYPE=CMS
,TYPE=LOCAL
,TYPE=CML,ASCB=(11)
,TYPE=CML,ASCB=addr addr: A-type address

,MODE=COND Note : MODE cannot be specified with TYPE=CPU.
,MODE=UNCOND

,REGS=SAVE
,REGS=USE
,REGS=STDSAVE

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

OBTAIN
Specifies that the lock designated by the TYPE parameter is to be obtained on
the caller’s behalf.

,TYPE=CPU
,TYPE=CMS
,TYPE=LOCAL
,TYPE=CML,ASCB=(11)
,TYPE=CML,ASCB= addr

Specifies the type of lock. The types available are:

CPU The processor lock. It is a pseudo spin lock providing
MVS-recognized disablement. There is one CPU lock per
processor and no processor can request another processor’s
lock. The lock is always available. Users can obtain the CPU
lock to become disabled for I/O and external interrupts.

CMS The cross memory services lock. It is a global suspend lock
used to serialize functions between address spaces.

LOCAL The lock that serializes resources in the home address space
pointed to by PSAAOLD. It is a local level suspend lock.

SETLOCK Macro

SETLOCK — Control Access to Serially Reusable Resources 33

CML The cross memory local lock. It is a local level suspend type
lock used to serialize resources in an address space other than
the home address space.

The requestor of a CML lock must have authority to access the
specified address space before requesting the lock. To establish
authority, the requestor sets the primary or secondary address
space to the one specified by the ASCB=(11) or ASCB=addr
parameter. Register 11 or addr must contain the address of the
ASCB whose local lock is requested. This address space must
be nonswappable before the SETLOCK request.

Note: If the requestor specifies OBTAIN,TYPE=CML and the
ASCB parameter points to the home address space, the
request is treated as though the LOCAL lock were being
obtained.

,MODE=COND
,MODE=UNCOND

Specifies whether the lock is to be conditionally or unconditionally obtained.

COND Specifies that the lock is to be conditionally obtained. That is, if
the lock is not owned on another processor, it is acquired on
the caller’s behalf. If the lock is already held, control is returned
indicating that the caller holds the lock or that another unit of
work on another processor owns the lock.

UNCOND Specifies that the lock is to be unconditionally obtained. That is,
if the lock is not owned on another processor, it is acquired on
the caller’s behalf. If the lock is already held by the caller,
control is returned to the calling program indicating that it
already owns the lock. If the lock is held on another processor,
the system suspends the SETLOCK caller until the lock is
available.

The system does not permit an unconditional OBTAIN request
for a CML lock if the lock is held by a unit of work that is set
nondispatchable.

,REGS=SAVE
,REGS=USE
,REGS=STDSAVE

Specifies the use of general purpose registers by the SETLOCK macro.

SAVE Specifies that the contents of registers 11 through 14 are saved
in the area pointed to by register 13 and are restored upon
completion of the SETLOCK request. This save area must be at
least 20 bytes, and must not be the same area as the standard
linkage save area used by the program.

Upon completion of the SETLOCK macro with REGS=SAVE,
the register contents are as follows:

Register Contents
0-14 Unchanged
15 Return code

USE Specifies that the contents of registers 11 through 13 are saved
in work registers 0, 1, and 15.

SETLOCK Macro

34 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Upon completion of the SETLOCK macro with REGS=USE, the
register contents are as follows:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

STDSAVE Specifies that the contents of registers 2 through 12 are saved
in a standard 72-byte save area pointed to by register 13.

Upon completion of the SETLOCK macro with
REGS=STDSAVE, the register contents are as follows:

Register Contents
0-1 Unchanged
2-13 Unchanged
14 Used as a work register by the system
15 Return code

Note: See “Output Register Information” on page 32 for information on register
usage when the REGS parameter is not specified.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ABEND Codes
SETLOCK might abnormally terminate with abend code X'073'. See z/OS MVS
System Codes for an explanation and programmer response for this code.

Return and Reason Codes
When control returns to the caller, register 15 (or register 13, if the REGS
parameter is not specified) contains one of the following hexadecimal return codes:

Table 4. Return Codes for the SETLOCK Macro

Return Code Meaning and Action

00 Meaning : The lock was successfully obtained.

Action : None.

04 Meaning : The lock was already held by the caller.

Action : None.

08 Meaning : The conditional obtain process was unsuccessful. The lock is
owned by another processor.

Action : None required. However, you might try to take some action based
upon your application.

When the SETLOCK OBTAIN request is for the CPU lock, the system returns only
return code 0. You do not need to check the return code because once control is
returned to you after the SETLOCK OBTAIN,TYPE=CPU request, you will have the
CPU lock.

SETLOCK Macro

SETLOCK — Control Access to Serially Reusable Resources 35

Example 1
Obtain the CPU lock, saving registers 2 through 12 in the standard save area
whose address is in register 13.
SETLOCK OBTAIN,TYPE=CPU,REGS=STDSAVE

Example 2
Obtain the CMS lock. Because the caller must hold the LOCAL or CML lock to
obtain the CMS lock, the caller must first obtain the LOCAL lock unconditionally,
saving registers 2 through 12 in the save area pointed to by register 13. The caller
then issues the request to obtain the CMS lock.
SETLOCK OBTAIN,TYPE=LOCAL,MODE=UNCOND,REGS=STDSAVE
SETLOCK OBTAIN,TYPE=CMS,MODE=UNCOND,REGS=STDSAVE

Example 3
Obtain the LOCAL lock unconditionally, saving registers 11 through 14 in the save
area pointed to by register 13. The save area pointed to by register 13 is not the
same area as the standard linkage save area.

LR 5,13 SAVE STANDARD SAVE AREA POINTER
LA 13,SETLOCK_SAVEAREA
SETLOCK OBTAIN,TYPE=LOCAL,MODE=UNCOND,REGS=SAVE
LR 13,5 RESTORE STANDARD SAVE AREA POINTER
.
.
.

SETLOCK_SAVEAREA DS 5F SAVE AREA FOR SETLOCK REQUESTS

SETLOCK RELEASE

Syntax
The RELEASE option of the SETLOCK macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SETLOCK.

SETLOCK

� One or more blanks must follow SETLOCK.

RELEASE

,TYPE=CPU
,TYPE=CMS
,TYPE=LOCAL
,TYPE=CML,ASCB=(11)
,TYPE=CML,ASCB=addr addr: A-type address

,REGS=SAVE
,REGS=USE

SETLOCK Macro

36 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,REGS=STDSAVE

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

RELEASE
Specifies that the lock designated by the TYPE parameter is to be released.

Note: If you specify RELEASE,TYPE=CML,ASCB=(11) or ASCB=addr, the
ASCB parameter specifies the home address space, and the lock that
the caller holds is home’s local lock, then SETLOCK processing treats
the CML release request as a RELEASE, TYPE=LOCAL.

,TYPE=CPU
,TYPE=CMS
,TYPE=LOCAL
,TYPE=CML,ASCB=(11)
,TYPE=CML,ASCB= addr

Specifies the type of lock. The types available are:

CPU The processor lock. It is a pseudo spin lock providing
MVS-recognized disablement. There is one CPU lock per
processor and no processor can request another processor’s
lock. The lock is always available. Users can obtain the CPU
lock to become disabled for I/O and external interrupts.

CMS The cross memory services lock. It is a global suspend lock
used to serialize functions between address spaces.

LOCAL The lock that serializes resources in the home address space
pointed to by PSAAOLD. It is a local level suspend lock.

CML The cross memory local lock. It is a local level suspend type
lock used to serialize resources in an address space other than
the home address space.

The requestor of a CML lock must have authority to access the
specified address space before requesting the lock. To establish
authority, the requestor sets the primary or secondary address
space to the one specified by the ASCB=(11) or ASCB=addr
parameter. Register 11 or addr must contain the address of the
ASCB whose local lock is requested. This address space must
be nonswappable before the SETLOCK request.

Note: If the requestor specifies OBTAIN,TYPE=CML and the
ASCB parameter points to the home address space, the
request is treated as though the LOCAL lock were being
obtained.

,REGS=SAVE
,REGS=USE
,REGS=STDSAVE

Specifies the use of general purpose registers by the SETLOCK macro.

SETLOCK Macro

SETLOCK — Control Access to Serially Reusable Resources 37

SAVE Specifies that the contents of registers 11 through 14 are saved
in the area pointed to by register 13 and are restored upon
completion of the SETLOCK request. This save area must be at
least 20 bytes, and must not be the same area as the standard
linkage save area used by the program.

Upon completion of the SETLOCK macro with REGS=SAVE,
the register contents are as follows:

Register Contents
0-14 Unchanged
15 Return code

USE Specifies that the contents of registers 11 through 13 are saved
in work registers 0, 1, and 15.

Upon completion of the SETLOCK macro with REGS=USE, the
register contents are as follows:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

STDSAVE Specifies that the contents of registers 2 through 12 are saved
in a standard 72-byte save area pointed to by register 13.

Upon completion of the SETLOCK macro with
REGS=STDSAVE, the register contents are as follows:

Register Contents
0-1 Unchanged
2-13 Unchanged
14 Used as a work register by the system
15 Return code

Note: See “Output Register Information” on page 32 for information on register
usage when the REGS parameter is not specified.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

Return and Reason Codes
When control is returned, register 15 (or register 13, if the REGS parameter is not
specified) contains one of the following hexadecimal return codes:

Table 5. Return Codes for SETLOCK RELEASE

Return Code Meaning and Action

00 Meaning : The lock was successfully released.

Action : None.

04 Meaning : The lock was not owned. The lock was free when the release
request was issued.

Action : None.

SETLOCK Macro

38 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 5. Return Codes for SETLOCK RELEASE (continued)

Return Code Meaning and Action

08 Meaning : The release process was unsuccessful. The lock was owned by a
different processor.

Action : None required. However, you might try to take some action based
upon your application.

0C Meaning : The release process was unsuccessful. The caller does not own
the specified local or CML lock. This return code applies to LOCAL or CML
release only.

Action : None required. However, you might try to take some action based
upon your application.

Example 1
Release the local lock and check the return code from the SETLOCK request. If the
release was unsuccessful, branch to the code at the RLSEFAIL label.
SETLOCK RELEASE,TYPE=LOCAL
LTR 13,13
BNZ RLSEFAIL

Example 2
Release the CML lock, saving the contents of registers 2 through 12 in a standard
save area. Check the return code from the SETLOCK request, and branch to the
code at the RLSEFAIL label if the release was unsuccessful.
SETLOCK RELEASE,TYPE=CML,REGS=STDSAVE
LTR 15,15
BNZ RLSEFAIL

SETLOCK TEST

Syntax
The TEST option of the SETLOCK macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SETLOCK.

SETLOCK

� One or more blanks must follow SETLOCK.

TEST

,TYPE=CPU
,TYPE=CMS
,TYPE=LOCAL
,TYPE=ALOCAL
,TYPE=CML Note : LOCKHLD or ASCB must be specified with TYPE=CML.

SETLOCK Macro

SETLOCK — Control Access to Serially Reusable Resources 39

,LOCKHLD=(reg) reg: Register (2) - (12)
Note : LOCKHLD is valid only with TYPE=CML, TYPE=ALOCAL, and
TYPE=CPU

,ASCB=(reg) reg: Register (2) - (12)
Note : ASCB is valid only with TYPE=CML.

,BRANCH=(HELD,addr) addr: RX-type address.
,BRANCH=(NOTHELD,addr)

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

TEST
Specifies that the lock designated by the TYPE parameter is to be checked to
determine if it is currently held on the requesting processor.

,TYPE=CPU
,TYPE=CMS
,TYPE=LOCAL
,TYPE=ALOCAL
,TYPE=CML

Specifies the type of lock. The types available are:

CPU The processor lock. It is a pseudo spin lock providing
MVS-recognized disablement. There is one CPU lock per
processor, and no processor can request another processor’s
lock. The lock is always available. Users can obtain the CPU
lock to become disabled for I/O and external interrupts.

CMS The cross memory services lock. It is a global suspend lock
used to serialize functions between address spaces.

LOCAL The lock that serializes resources in the home address space
pointed to by PSAAOLD. It is a local level suspend lock.

ALOCAL Determines whether a local lock is held, either home’s LOCAL
lock or a CML lock. The LOCKHELD=(reg) parameter can be
specified with TYPE=ALOCAL.

CML The cross memory local lock. It is a local level suspend type
lock used to serialize resources in an address space other than
the home address space. TYPE=CML specifies that the caller
wishes to determine whether a CML lock is held. Either the
ASCB=(reg) or the LOCKHLD=(reg) parameter can be specified
with TYPE=CML, but not both.

,LOCKHLD= (reg)
Specifies that the designated register is to be used as a return register by the
macro. This parameter is valid only for TYPE=CML, TYPE=CPU, and
TYPE=ALOCAL.

SETLOCK Macro

40 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

If TYPE=CML is specified and a CML lock is held, the system returns the ASCB
address of the CML-locked address space in the specified register.

If TYPE=CPU is specified, the system returns the current CPU lock use count
for this processor in the specified register.

If TYPE=ALOCAL is specified and the LOCAL lock is held, the system returns a
zero in the specified register.

If TYPE=ALOCAL is specified and a CML lock is held, the system returns the
ASCB address of the CML-locked address space in the specified register. If a
local lock is held, the system returns a zero in the specified register.

,ASCB= (reg)
Specifies a register that contains the ASCB address. The system checks the
ASCB to determine whether the requestor’s local lock is a CML lock. This
parameter is valid only with TYPE=CML.

Note: Unlike the OBTAIN and RELEASE options of the SETLOCK macro,
ASCB=addr is not valid.

,BRANCH=(HELD, addr)
,BRANCH=(NOTHELD, addr)

If (HELD,addr) is specified, the specified address is branched to if the specified
lock is held on the requesting processor.

If (NOTHELD,addr) is specified, the specified address is branched to if the
specified lock is not currently held on the requesting processor.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

Return and Reason Codes
When control is returned, register 15 contains one of the following hexadecimal
return codes (if the BRANCH= parameter was omitted):

Table 6. Return Codes for SETLOCK TEST

Return Code Meaning and Action

00 Meaning : The lock was held by the requestor, or (if TYPE=CMS was
specified) at least one lock was held.

Action : None.

04 Meaning : The lock was available, or (if TYPE=CMS was specified) no lock
was held.

Action : None.

Note: TYPE=CMS is used to determine if at least one cross memory services lock
is held, but cannot be used to determine which one, or to determine if all are
held.

Example 1
If a local lock is not held, branch to DSRLLINT; otherwise, execute the next
sequential instruction.
SETLOCK TEST,TYPE=LOCAL,BRANCH=(NOTHELD,DSRLLINT)

SETLOCK Macro

SETLOCK — Control Access to Serially Reusable Resources 41

Example 2
Put the current CPU lock use count for this processor into register 3.
SETLOCK TEST,TYPE=CPU,LOCKHLD=(3)

Example 3
Determine whether the local lock of the address space specified in register 11 is
held as a CML lock.
SETLOCK TEST,TYPE=CML,ASCB=(11)

SETLOCK Macro

42 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SETRP — Set Return Parameters

Description
Use the SETRP macro within a recovery routine to indicate the various requests
that the recovery routine can make. SETRP is valid for functional recovery routines
(FRRs) and ESTAE-type recovery routines. For more information about recovery
routines, see the section on providing recovery in z/OS MVS Programming:
Authorized Assembler Services Guide.

The SETRP macro is also described in z/OS MVS Programming: Assembler
Services Reference ABE-HSP with the exception of the RECORD, FRELOCK,
SERIAL, RETRY, RETRY15, FRLKRTY, and SSRESET parameters.

Environment
The requirements for the caller are:

Minimum authorization : Problem state and any PSW key. For the RECORD,
FRELOCK, SERIAL, RETRY, RETRY15, AND FRLKRTY
parameters, supervisor state or PSW key 0-7.

Dispatchable unit mode : Task or SRB
Cross memory mode : Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit

Note: For the DUMPOPX parameter, AMODE=64 is not
allowed.

ASC mode : Primary, secondary, or access register (AR)
Note: Callers in secondary ASC mode cannot specify the
DUMPOPX keyword.

Interrupt status : Enabled or disabled for I/O and external interrupts
Locks : The caller may hold locks, but is not required to hold any.
Control parameters : None.

Programming Requirements
v If the program is in AR mode, issue the SYSSTATE ASCENV=AR macro before

SETRP. SYSSTATE ASCENV=AR tells the system to generate code appropriate
for AR mode.

v Include the IHASDWA mapping macro to map the system diagnostic work area
(SDWA). The SDWA is addressable when the recovery routine is entered; when
the SETRP macro is issued, the same address space must be addressable. (See
SDWA in z/OS MVS Data Areas, Vol 4 (RD-SRRA) for the mapping provided by
IHASDWA.)

v If you plan to specify RETREGS=YES,RUB=reg info addr, you must obtain
storage for and initialize the register update block (RUB). See the RETREGS
parameter description for more information about this area.

Restrictions
v You can use SETRP only if the system provided an SDWA.

v Recovery routines established through the STAE macro, or the STAI parameter
on the ATTACH or ATTACHX macro, cannot update registers on retry, so the
RETREGS parameter does not apply.

v For FRRs, RETREGS=YES (or RETREGS=NO) has no effect. For FRRs, the
system always restores GPRs 0-14 from the SDWASRSV field, and ARs 0-14

© Copyright IBM Corp. 1988, 2002 43

from the SDWAARSV field. If you specify RETRY15=YES, the system also
restores GPR 15 and AR 15 from the SDWASRSV and SDWAARSV fields,
respectively.

Input Register Information
Before issuing the SETRP macro, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents
1 If you do not specify the WKAREA parameter, address of the

SDWA; otherwise, the caller does not have to place any information
into this register.

13 If you specify the REGS parameter, address of a standard 72-byte
save area containing the registers to be restored; otherwise, the
caller does not have to place any information into this register.

Before issuing the SETRP macro, the caller must ensure that the following access
registers (ARs) contain the specified information:

Register Contents
1 If you do not specify the WKAREA parameter, ALET of the SDWA

whose address is in GPR 1; otherwise, the caller does not have to
place any information into this register.

13 If you specify the REGS parameter, ALET of the standard 72-byte
save area whose address is in GPR 13; otherwise, the caller does
not have to place any information into this register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Note: Control does not return to the caller if the caller specifies the REGS
parameter.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The SETRP macro is written as follows:

SETRP Macro

44 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SETRP.

SETRP

� One or more blanks must follow SETRP.

WKAREA=(reg) reg: Decimal digits 1-12.
Default : WKAREA=(1)

,REGS=(reg1) reg1: Decimal digits 0-12, 14, 15.
,REGS=(reg1,reg2) reg2: Decimal digits 0-12, 14, 15.

Note : If you specify (reg1,reg2), specify the registers in the same order as in
an STM instruction; for example, to restore all registers except register 13,
specify REGS=(14,12).

,DUMP=IGNORE Default : DUMP=IGNORE
,DUMP=YES
,DUMP=NO

,DUMPOPT=parm list addr parm list addr: RX-type address, or register (2) - (12).
,DUMPOPX=parm list addr Note : Specify these parameters only if you specify DUMP=YES.

,RC=0 Default : RC=0
,RC=4
,RC=16

,RETADDR=retry addr retry addr: RX-type address, or register (2) - (12).
Note : This parameter may be specified only if RC=4 is specified above.

,RETREGS=NO info addr: RX-type address, or register (2) - (12).
,RETREGS=YES Default : RETREGS=NO
,RETREGS=YES,RUB=info addr Note : This parameter may be specified only if RC=4 is specified above.
,RETREGS=64

,FRESDWA=NO Default : FRESDWA=NO
,FRESDWA=YES Note : This parameter may be specified only if RC=4 is specified above.

,COMPCOD=code1 code1: Symbol or decimal number.
,COMPCOD=(code) code: Symbol, decimal number, or register (2) - (12).
,COMPCOD=(code, USER) Default : COMPCOD=(code,USER)
,COMPCOD=(code,SYSTEM)

,FRELOCK=(locks) locks: Any combination of the following, separated by commas:
CPU CMS
LOCAL CML(cmlascb)

cmlascb: RX-type address or register (2) - (12).

SETRP Macro

SETRP — Set Return Parameters 45

,REASON=code code: Symbol, decimal or hexadecimal number, or register (2) - (12).

,RECORD=IGNORE Default : RECORD=IGNORE
,RECORD=YES
,RECORD=NO

,RECPARM=record list addr record list addr: RX=type address, or register (2) - (12).
Note : This parameter may be specified only if RECORD=IGNORE or
RECORD=YES is specified above.

,SERIAL=YES
,SERIAL=NO

,RETRY=FRR Default : RETRY=FRR
,RETRY=ERROR

,RETRY15=NO Default : RETRY15=NO
,RETRY15=YES

,REMREC=NO Default : REMREC=NO
,REMREC=YES

,FRLKRTY=NO Default : FRLKRTY=NO
,FRLKRTY=YES

,SSRESET=YES
,SSRESET=NO

Parameters
The parameters are explained below:

WKAREA=(reg)
Specifies the address of the SDWA passed to the recovery routine. If this
parameter is omitted, the address of the SDWA must be in register 1.

,REGS=(reg 1)
,REGS=(reg 2)

Specifies the register or range of registers to be restored from the 72-byte
standard save area pointed to by the address in register 13. If you specify
REGS, a branch on register 14 instruction will also be generated to return
control to the system. If you do not specify REGS, you must code your own
branch on whichever register contains the return address.

Note: If you specify reg1,reg2, specify the registers in the same order as in an
STM instruction; for example, to restore all registers except register 13,
specify REGS=(14,12).

,DUMP=IGNORE
,DUMP=YES
,DUMP=NO

Specifies that the dump option fields will not be changed (IGNORE), will be
zeroed (NO), or will be merged with dump options specified in previous dump
requests, if any (YES). If IGNORE is specified, a previous recovery routine had

SETRP Macro

46 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

requested a dump or a dump had been requested through the ABEND macro,
and the previous request will remain intact. If NO is specified, no dump will be
taken.

DUMP=YES does not guarantee that a SYSABEND/SYSUDUMP will be taken.
You may specify this request in an FRR for an SRB but you will get an abdump
only if the SRB abend successfully percolates to a task and none of the FRRs
for that task choose to retry and the final value of the DUMP= remains the
same after every recovery routine has received control.

,DUMPOPT=parm list addr
,DUMPOPX=parm list addr

Specifies the address of a parameter list of dump options. You can create the
parameter list through the list form of the SNAP or SNAPX macro, or you can
create a compatible list. DUMPOPT specifies the address of a parameter list
that the SNAP macro creates. DUMPOPX specifies the address of a parameter
list that the SNAPX macro creates. A program in secondary mode cannot use
the DUMPOPX parameter.

If the specified dump options include subpools for storage areas to be dumped,
up to seven subpools can be dumped. Subpool areas are accumulated and
wrapped, so that the eighth subpool area specified replaces the first.

If the dump options specified include ranges of storage areas to be dumped,
only the storage areas in the first thirty ranges will be dumped.

The TCB, DCB, ID, and STRHDR options available on SNAP or SNAPX are
ignored if they appear in the parameter list. The TCB used will be the one for
the task that encountered the error. The DCB used will be one created by the
system, and either SYSABEND, SYSMDUMP, or SYSUDUMP will be used as a
DDNAME.

,REASON=code
Specifies the reason code that the user wishes to pass to subsequent recovery
routines. The value range for code is any 32-bit hexadecimal number or 31-bit
decimal number. See z/OS MVS Programming: Assembler Services Reference
ABE-HSP for information about how a user can change this code.

,RC=0
,RC=4
,RC=16

Specifies the return code the recovery routine sends to the system to indicate
what further action is required:

Decimal Code Meaning

0 Continue with error processing; causes entry into
previously-specified recovery routine, if any.

4 Retry using the retry address specified.

16 Valid only for an ESTAI/STAI recovery routine. The system
should not give control to any further ESTAI/STAI routines, and
should abnormally end the task.

,RETADDR=retry addr
Specifies the address of the retry routine to which control is to be given.

,RETREGS=NO
,RETREGS=YES
,RETREGS=YES,RUB=reg info addr

SETRP Macro

SETRP — Set Return Parameters 47

|
|
|
|
|

,RETREGS=64
Specifies the contents of the registers to be restored on entry to the retry
routine. RETREGS=NO indicates that you do not want the system to restore
any register contents from the SDWA.

If you specify RETREGS=YES, in a recovery routine defined through the
ESTAE, ESTAEX, or FESTAE macro, the ESTAI parameter on the ATTACH or
ATTACHX macro, or an associated recovery routine (ARR), the system does
the following:
v Initializes GPRs 0-15 from the SDWASRSV field of the SDWA
v Initializes ARs 0-15 from the SDWAARSV field of the SDWA.

Specifying RETREGS=64 is the same as specifying RETREGS=YES, except
the registers for retry are the 64-bit general purpose registers in field
SDWAG64.

RUB (register update block) specifies the address of an area that contains
register update information for the GPRs. The data you specify in this area will
be moved into the SDWASRSV field of the SDWA and will be loaded into the
GPRs on entry to the retry routine. You cannot use the RUB to specify data to
be moved into the SDWAARSV field for loading the ARs. You can use the RUB
for both ESTAE-type recovery routines and FRRs. The maximum length of the
RUB is 66 bytes. You must acquire storage for and initialize this area as
follows:

v The first two bytes represent the registers to be updated, register 0
corresponding to bit 0, register 1 corresponding to bit 1, and so on. The user
indicates which of the registers are to be stored in the SDWA by setting the
corresponding bits in these two bytes.

v The remaining 64 bytes contain the update information for the registers, in
the order 0-15. If all 16 registers are being updated, this field consists of 64
bytes. If only one register is being updated, this field consists of only 4 bytes
for that one register.

For example, if only registers 4, 6, and 9 are being updated:

v Bits 4, 6, and 9 of the first two bytes are set.

v The remaining field consists of 12 bytes for registers 4, 6, and 9; the first 4
bytes are for register 4, followed by 4 bytes for register 6, and 4 final bytes
for register 9.

,FRESDWA=NO
,FRESDWA=YES

Specifies that the entire SDWA be freed (YES) or not be freed (NO) before
entry into the retry routine.

,COMPCOD=code1
,COMPCOD=(code)
,COMPCOD=(code,USER)
,COMPCOD=(code,SYSTEM)

Specifies the user or system completion code that the user wants to pass to
subsequent recovery routines.

,FRELOCK= (locks)
Specifies the locks to be freed and the corresponding lockwords that are placed
in the SDWA:
CPU Processor lock
CMS Cross memory services lock

SETRP Macro

48 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

LOCAL Storage lock of the storage the caller is
executing in

CML(cmlascb) Cross memory local lock, where cmlascb
indicates the ASCB address of the address
space for which the local lock is to be freed

Note: If FRLKRTY=NO is specified or taken as a default, the specified locks
are freed only on percolation, not on retry. Specifying FRLKRTY=YES
allows the locks listed in FRELOCK to be freed on retry.

,RECORD=IGNORE
,RECORD=YES
,RECORD=NO

Specifies whether the SDWA is to be recorded in SYS1.LOGREC
(RECORD=YES/NO), or whether the system should honor previous instructions
about recording the SDWA in SYS1.LOGREC (RECORD=IGNORE).

If you specify RECORD=YES, the system records the entire SDWA (including
the fixed length base, the variable length recording area, and the recordable
extensions) in SYS1.LOGREC when the ESTAE recovery routine returns
control, even if the mainline program issued the ESTAE or ESTAEX macro with
RECORD=NO.

If you specify RECORD=NO, the system does not record the SDWA in
SYS1.LOGREC, even if the mainline program issued ESTAE or ESTAEX with
RECORD=YES.

If you specify RECORD=IGNORE, the system honors the request as specified
by the RECORD parameter on the ESTAE or ESTAEX macro.

,RECPARM=record list addr
Specifies the address of a user-supplied record parameter list used to update
the SDWA with recording information. The parameter list consists of three
8-byte fields:

v The first field contains the load module name.

v The second field contains the CSECT name (assembly module name).

v The third field contains the recovery routine name (assembly module name).
If the recovery routine label is not the same as the assembly module name,
the label can be used.

The three fields are left-justified, and padded with blanks.

,SERIAL=YES
,SERIAL=NO

Specifies whether the percolation from an SRB mode FRR to a related task
recovery routine (ESTAE or FRR) is to be serialized (YES) or not serialized
(NO) with respect to unlocked task recovery. See 'SRB to Task Percolation' in
z/OS MVS Programming: Authorized Assembler Services Guide.

If the task is already in recovery for another error when SERIAL=YES is
specified, the percolation request is deferred pending a requested task retry
from any recovery routine covering mainline code. If such a retry is not
requested, the task is terminated and all deferred percolations are purged. Only
the last FRR to receive control when an error occurs can specify SERIAL=YES.

,RETRY=FRR
,RETRY=ERROR

Specifies the cross memory environment in which the retry routine gets control.

SETRP Macro

SETRP — Set Return Parameters 49

RETRY=FRR, the default, specifies that the retry routine gets control in the
cross memory environment that exists at the time of entry to the FRR.

RETRY=ERROR specifies that the retry routine gets control in the cross
memory environment that existed at the time of the error. Do not specify
RETRY=ERROR if the cross memory status at the time of the error is not
available, that is, if SDWARPIV is set to one. (Be careful not to create a loop by
retrying to an erroneous cross memory state with RETRY=ERROR.)

,RETRY15=YES
,RETRY15=NO

In an FRR environment only, specifies that GPR 15 is restored from
SDWASRSV and AR 15 is restored from SDWAARSV if RETRY15=YES.
Otherwise, it contains the entry point address of the retry routine.

This parameter may be specified only when RC=4 is specified. If
RETRY15=YES is not coded on any SETRP invocation prior to returning to the
system, the effect is that of specifying RETRY15=NO.

,REMREC=YES
,REMREC=NO

In an FRR or ESTAE environment, specifies that the FRR/ESTAE entry for the
currently running FRR/ESTAE routine be removed (REMREC=YES) or not
removed (REMREC=NO). This parameter may be specified only when RC=4 is
specified, indicating a retry request.

The entry is removed before control returns to the retry point. If REMREC=YES
is not coded on any SETRP invocation before the system receives control, the
effect is that of specifying REMREC=NO. The REMREC parameter may be
used to remove a recovery routine that has been defined with a token, although
the token cannot be specified when you code the SETRP macro.

,FRLKRTY=YES
,FRLKRTY=NO

In an FRR environment only, specifies that the locks specified on FRELOCK be
freed (FRLKRTY=YES) or not be freed (FRLKRTY=NO) on retry.

This parameter may be specified only when RC=4 is specified. If
FRLKRTY=YES is not coded on any SETRP invocation prior to returning to the
system, the effect is that of specifying FRLKRTY=NO.

SSRESET=YES
SSRESET=NO

SSRESET=YES specifies that, if the current recovery routine abnormally ends,
the next recovery routine is to get control in the subspace environment that
existed when the current recovery routine was entered. Specify SSRESET=YES
when the current recovery routine has temporarily modified the subspace
environment, and when it is appropriate for the next recovery routine to receive
control in the subspace environment in which the current recovery routine
received control.

SSRESET=NO negates an earlier specification of SSRESET=YES. Specify
SSRESET=NO when SSRESET=YES protection is no longer needed. If the
current recovery routine abnormally ends after specifying SSRESET=NO, the
next recovery routine will get control in the subspace in which the current
routine was running when the error occurred.

If you do not specify SSRESET and the current recovery routine abnormally
ends, the next recovery routine will get control in the subspace in which the
current recovery routine was running when the error occurred.

SETRP Macro

50 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

See the chapter on subspaces in z/OS MVS Programming: Extended
Addressability Guide for more information about subspaces and recovery.

Notes:

1. The FRESDWA parameter cannot be specified or defaulted for a functional
recovery routine (FRR). The SDWA is always released before an FRR’s retry
routine gets control.

2. The SERIAL parameter is relevant only for FRRs defined for SRBs that have a
related task.

3. The SERIAL and RETRY parameters are mutually exclusive.

The following table indicates which parameters are available to functional recovery
routines (FRRs) and which parameters are available to ESTAE-type recovery
routines.

Parameter FRR ESTAE-type recovery routines
WKAREA x x
REGS x x
DUMP x x
REASON x x
RC=0 x x
RC=4 x x
RC=16 x
RETADDR x x
RETREGS x x
RUB x x
FRESDWA x
COMPCOD x x
FRELOCK x
RECORD x x
RECPARM x x
SERIAL x
RETRY x
RETRY15 x
REMREC x x
FRLKRTY x
DUMPOPT x x
DUMPOPX x x
SSRESET x

ABEND Codes
None.

Return and Reason Codes
None.

Example 1
The first FRR established for an SRB routine requests percolation, freeing of the
CML lock (the ASCB address is in register 2), and serialization of percolation to the
related task.
SETRP RC=0,FRELOCK=(CML(2)),SERIAL=YES

SETRP Macro

SETRP — Set Return Parameters 51

Example 2
An FRR requests retry with the retry routine getting control in the same cross
memory mode as the time of FRR entry. The retry address is in register 3.
SETRP RC=4,RETADDR=(3),RETRY=FRR

SETRP Macro

52 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SJFREQ — Call Scheduler JCL Facility Services

Description
The SJFREQ macro services can be used to manipulate text unit data that
represents processing options for system output (sysout) data sets. The SJFREQ
services described in this section include the following:

v The SJFREQ RETRIEVE service retrieves keyword subparameter information in
text unit format from output descriptors. These output descriptors can be
specified either on an OUTPUT JCL statement or through dynamic output.

v The SJFREQ SWBTU_MERGE service merges lists of scheduler work block text
units (SWBTUs) and allows applications to indicate keys to be removed from a
list of SWBTUs.

v The SJFREQ VERIFY service verifies OUTDES statements, operands, and
subparameters and builds text units to represent them. Your application can use
these text units to dynamically define processing options for a sysout data set.

v The SJFREQ TERMINATE service cleans up SJF’s recovery and working storage
environment.

z/OS MVS Programming: Authorized Assembler Services Guide describes the
OUTDES statement and its operands, as well as the individual SJF services.

Environment
The requirements for the caller are:

Minimum authorization : The requirements vary, depending on the service.

v SJFREQ RETRIEVE and SJFREQ SWBTU_MERGE:

Supervisor state, with a PSW key that matches the key of
the caller’s storage.

v SJFREQ VERIFY:

Problem state or supervisor state. For supervisor state,
the caller must run in PSW key 1 and the caller’s storage
must be in PSW key 1. For problem state, the caller must
have a PSW key that matches the key of the caller’s
storage.

v SJFREQ TERMINATE:

Problem state or supervisor state, with a PSW key that
matches the key of the caller’s storage.

Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: Any
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : Must be in the primary address space

Programming Requirements
The application must include the CVT and IEFJESCT mapping macros. If the
application codes the PARM parameter on the SJFREQ macro, the caller must also
declare a 4-byte pointer, SJFPTR.

© Copyright IBM Corp. 1988, 2002 53

For each SJFREQ invocation, the application must initialize certain fields in an input
parameter list. Fields are discussed within each service description. The following
lists the parameter list name for each service.

Service Parameter List Name

RETRIEVE IEFSJREP

SWBTU_MERGE IEFSJSMP

VERIFY IEFSJVEP

TERMINATE Any of the three parameter list names above.

Restrictions
None.

Input Register Information
Before issuing the SJFREQ macro, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents
1 If PARM is not specified, the address of a word that contains the

address of the input parameter list
13 The address of an 18-word save area

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The standard form of the SJFREQ macro is written as follows:

name name: Symbol. Begin name in column 1.

SJFREQ Macro

54 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

� One or more blanks must precede SJFREQ

SJFREQ

� One or more blanks must follow SJFREQ

REQUEST=RETRIEVE
REQUEST=SWBTU_MERGE
REQUEST=VERIFY
REQUEST=TERMINATE

,PARM=addr addr: RX-type address, or registers (1) - (12).

Parameters
The parameters are explained as follows:

REQUEST=RETRIEVE
REQUEST=SWBTU_MERGE
REQUEST=VERIFY
REQUEST=TERMINATE

Specifies the SJF service to be called. SJF services that you can request
through the SJFREQ macro are:

RETRIEVE The SJFREQ RETRIEVE service retrieves
keyword subparameter information in text unit
format from output descriptors. These output
descriptors can be specified either on an
OUTPUT JCL statement or through dynamic
output. See “SJFREQ RETRIEVE Service” on
page 56 for more detailed information on using
this service.

SWBTU_MERGE Use SJFREQ SWBTU_MERGE to create a
single list of SWBTUs from a base SWBTU list
and a merge SWBTU list. The resulting list of
SWBTUs contains all the text units in the base
and merge lists. If duplicate text units exist,
only one appears in the final SWBTU list. The
SWBTU_MERGE service also allows an
application to indicate keys to be removed from
a list of SWBTUs. See “SJFREQ
SWBTU_MERGE Service” on page 60 for more
detailed information on using this service.

VERIFY Use SJFREQ VERIFY to validate OUTDES
statements and build text units to be used as
input to dynamic output. See “SJFREQ VERIFY
Service” on page 69 for more detailed
information on using this service.

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 55

TERMINATE Use SJFREQ TERMINATE after previously
issuing a RETRIEVE, SWBTU_MERGE, or
VERIFY request that specified the no cleanup
option (SJxxNOCU). TERMINATE cleans up
SJF’s recovery and working storage
environment. See “SJFREQ TERMINATE
Service” on page 82 for more detailed
information on using this service.

,PARM=addr
Specifies the address of the parameter list for the service requested. You must
initialize certain parameter list fields for each service. The following list indicates
where the parameter lists are described.
v “SJFREQ RETRIEVE Input Parameters” on page 57 describes the

RETRIEVE parameter list.
v “SJFREQ SWBTU_MERGE Input Parameters” on page 60 describes the

SWBTU_MERGE parameter list.
v “SJFREQ VERIFY Input Parameters” on page 69 describes the VERIFY

parameter list.
v You may only use IEFSJREP, IEFSJSMP, or IEFSJVEP (use the same one

you used on a prior request) for the TERMINATE service.

If you omit PARM, register 1 must contain the address of a word that contains
the address of the input parameter list.

SJFREQ RETRIEVE Service
The SJFREQ RETRIEVE service retrieves keyword subparameter information in
text unit format from output descriptors. These output descriptors can be specified
either on an OUTPUT JCL statement or through dynamic output. Your application
can invoke this service to retrieve output descriptor information in a functional
subsystem environment.

Programming Requirements
An application must complete the following steps to issue a RETRIEVE request:

1. Obtain storage for the RETRIEVE parameter list (IEFSJREP) and initialize the
fields. Place the address of IEFSJREP in the PARM parameter.

2. Provide a keyword list (SJRELIST). The keyword list contains the keywords for
which the application wants information retrieved. SJFREQ RETRIEVE Keyword
List describes the list.

3. Issue SJFREQ RETRIEVE.

SJFREQ RETRIEVE Keyword List
The keyword list contains paired fields; each pair consists of a keyword field and a
pointer field. In the list, the application specifies the JCL keywords for which
information is to be retrieved. For each keyword specified, the RETRIEVE service
returns in SJRETPAD a pointer to the text unit pointer list associated with the
keyword.

The following table shows the SJRELIST paired fields and their offsets and lengths.
The fields that the application initializes are indicated.

SJFREQ Macro

56 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Field Name Offset (bytes) Value
Length
(bytes)

Value to be assigned

SJRELIST

SJREKEYW 0 (X’0’) 8 keyword 1 (initialized by application)

SJRETPAD 8 (X’8’) 4 pointer (returned by the system)

SJREKEYW 12 (X’C’) 8 keyword 2 (initialized by application)

SJRETPAD 20 (X’14’) 4 pointer (returned by the system)

. . . .

. . . .

In addition to JCL keywords, SJFREQ can also return a text unit for the keyword
providing special TCP/IP support. This text unit has the following characteristics in
the Output Descriptor.

Keyword Parameter : IPADDR
Key in Hex : 8005
Maximum number of Value
Fields : 1
Length of Value Field : 0 - 124
Value Field : EBCDIC text ’40’X - ’FE’X
Function : IP address extracted from the DEST=’IP:ip-address’ format

of the DEST=keyword

SJFREQ RETRIEVE Input Parameters
In addition to providing a keyword list, for each SJFREQ invocation, you need to
initialize certain fields of parameter list IEFSJREP. The list of parameters and
descriptions of their values are below.

SJREID The identifier ‘SJRE’ of the RETRIEVE parameter list. Assign the
symbolic equate SJRECID to this field.

SJREVERS The current version number of the RETRIEVE parameter list.
Assign the symbolic equate SJRECVER to this field.

SJREFLAG The environment control flag.

SJRENOCU Indicates whether the SJF environment is preserved
from call to call or obtained for each call. Set to one
to preserve the environment from call to call. Set to
zero to obtain a new environment for a call.

SJRELEN The length of the RETRIEVE parameter list (IEFSJREP). Assign the
symbolic equate SJRELGTH to this field.

SJRESTOR The local working storage pointer or zero. This field must contain
zero on the first RETRIEVE call. On subsequent calls, the field
contains the value returned from the most recent RETRIEVE call.
Use the returned value for subsequent calls.

SJREJDVT Enter zero for this field on input. This field must contain zero on the
first RETRIEVE call. On subsequent calls, the field contains the
value returned from the most recent RETRIEVE call. Use the
returned value for subsequent calls.

SJRETOKN Enter the output descriptor token in this field. If you are coding a

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 57

Print Service Facility (PSF) exit, refer to PSF/MVS System
Programming Guide for information on obtaining the output
descriptor token. The token can be obtained from the GDSOUTK
field in data area IAZFSIP.

SJREAREA The address of the storage area in which RETRIEVE is to return
the keyword subparameter information in text unit format from
output descriptors.

SJRESIZE The amount of the storage allocated for the output descriptor
information.

SJRENKWD The number of keywords passed in the keyword list (SJRELIST).

SJREKWDL The address of the keyword list (SJRELIST).

SJFREQ RETRIEVE Output Parameters
In addition to the output provided in the keyword list, the RETRIEVE service returns
data in several fields of the IEFSJREP parameter list. The list of output parameters
and their descriptions are below.

SJREREAS Contains a reason code returned from the RETRIEVE service. This
field contains a value when register 15 contains a return code other
than zero.

SJREKERR Contains the address of the first keyword in the keyword list that
caused the error.

SJREPAD Contains the address of the list of text unit pointers. Each text unit
pointer points to a returned text unit. The last text unit has the
high-order bit set to one.

ABEND Codes
None.

SJFREQ RETRIEVE Return and Reason Codes
SJFREQ RETRIEVE return codes appear in register 15. When SJFREQ returns
control to your program, SJREREAS contains a reason code when register 15
contains a nonzero value. Return and reason codes are defined in macro IEFSJRC.
The following table identifies the hexadecimal return and reason code combinations,
tells what each means, and recommends an action you should take.

Table 7. Return and Reason Codes for the SJFREQ RETRIEVE Service

Return Code Reason Code Meaning and Action

0 000 Meaning : RETRIEVE processing completed
successfully.

Action : None.

4 002 Meaning : Program error. The token specified in
SJRETOKN is not valid.

Action : Specify a valid token in SJRETOKN.

4 004 Meaning : Program error. The RETRIEVE request
was not processed. The value specified in
SJREJDVT is not valid.

Action : Set SJREJDVT to hexadecimal zeros or
to the value returned on the previous call.

SJFREQ Macro

58 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 7. Return and Reason Codes for the SJFREQ RETRIEVE Service (continued)

Return Code Reason Code Meaning and Action

4 005 Meaning : System error. The information
referenced by parameter field SJREJDVT does
not exist.

Action : SJF did not initialize properly. Contact the
appropriate IBM support personnel.

4 0C8 Meaning : Program error. SJRETOKN refers to a
JCL statement that is not valid.

Action : Supply a value in SJRETOKN that refers
to a valid JCL statement.

4 0C9 Meaning : Program error. A keyword in the
keyword list is not defined to the JCL statement
referred to by SJRETOKN.

Action : SJREKERR contains the address of the
keyword in error. Correct or delete the keyword in
error.

4 258 Meaning : Program error. The area specified by
SJRESIZE is less than the minimum allowed.

Action : Define SJRESIZE to a size that can
contain at least one text unit.

4 25B Meaning : Program error. No storage area
address was specified.

Action : Specify a storage area address in
SJREAREA.

4 25C Meaning : Program error. The value in
SJRENKWD indicates that no keywords were
specified.

Action : Specify a value of one or greater for
SJRENKWD.

4 25D Meaning : Program error. No keyword list address
was specified.

Action : Specify a keyword list address in
SJREKWDL.

4 25F Meaning : Program error. Zero is given as the
value for a keyword in the keyword list.

Action : SJREKERR contains the address of the
keyword. Change the zero to a valid value.

0C 000 Meaning : System error. The system could not
obtain storage for this request.

Action : Inform your system programmer of this
problem.

10 000 Meaning : System error. The ESTAE-type
recovery routine failed.

Action : Inform your system programmer of this
problem.

14 000 Meaning : System error. SJF encountered a
condition that caused an abnormal termination.

Action : Check the input parameters, particularly
any pointer fields, to determine if the input values
are correct.

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 59

Table 7. Return and Reason Codes for the SJFREQ RETRIEVE Service (continued)

Return Code Reason Code Meaning and Action

18 000 Meaning : System error. The service routines for
SJFREQ are not available.

Action : SJF did not initialize properly. Contact the
appropriate IBM support personnel.

SJFREQ SWBTU_MERGE Service
Use the SWBTU_MERGE service to merge a list of base SWBTUs with a list of
merge SWBTUs that contain modifications. An application can also use the
SWBTU_MERGE service to indicate keys to be removed from a list of SWBTUs.

Programming Requirements
You must provide input information in the SWBTU_MERGE parameter list
(IEFSJSMP).

In addition to the IEFSJSMP parameter list, you can provide an erase list. An erase
list is a contiguous set of text units that you request to be erased from a base
SWBTU. An erase list is required when you set SJSMETUP and SJSMETUS. If
only a merge SWBTU and erase list are provided on input, SWBTU_MERGE
validates the erase list, but does not apply it to the resulting SWBTU.

SJFREQ SWBTU_MERGE Input Parameters
For each SJFREQ invocation, you need to initialize certain fields of parameter list
IEFSJSMP. The list of parameters and descriptions of their values are below.

SJSMID The identifier ‘SJSM’ of the SWBTU_MERGE parameter list. Assign
the symbolic equate SJSMCID to this field.

SJSMVERS The current version number of the SWBTU_MERGE parameter list.
Assign the symbolic equate SJSMCVER to this field.

SJSMFLAG The environment control flag.

SJSMNOCU Indicates whether the SJF environment is preserved
from call to call or obtained for each call. Set to one
to preserve the environment from call to call. Set to
zero to obtain a new environment for a call.

SJSMLEN The length of the SWBTU_MERGE parameter list (IEFSJSMP).
Assign the symbolic equate SJSMLGTH to this field.

SJSMSTOR The local working storage pointer or zero. This field must contain
zero on the first SWBTU_MERGE call. On subsequent calls, the
field contains the value returned from the most recent
SWBTU_MERGE call. Use the value returned for subsequent calls.

SJSMAREA The address of the area to which a single SWBTU is returned after
SWBTU_MERGE processing. SJSMSIZE contains the size of this
area.

SJSMSIZE The length of the area to which a single SWBTU is returned after
SWBTU_MERGE processing. Specify the size of SJSMAREA in this
field.

SJSMSWBN The number of SWBTU pointers in the base SWBTU pointer list.

SJFREQ Macro

60 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

This field can be zero if the address of the base SWBTU pointer list
(SJSMSWBA) is also zero and you specify a merge SWBTU pointer
list.

SJSMSWBA The address of the base SWBTU pointer list. You can specify zero
for this value if the number of SWBTU pointers in the base SWBTU
pointer list (SJSMSWBN) is zero and you specify a merge SWBTU
pointer list.

SJSMMTUP The address of the merge SWBTU pointer list. You can specify zero
for this value if the number of SWBTU pointers in the merge
SWBTU pointer list (SJSMMTUN) is zero and you specify a base
SWBTU pointer list.

SJSMMTUN The number of SWBTU pointers in the merge SWBTU pointer list.
You can specify zero for this value if the address of the merge
SWBTU pointer list (SJSMMTUP) is zero and you specify a base
SWBTU pointer list.

SJSMETUS The number of elements contained on input in the erase text unit
list area. You can specify zero for this value if the address of the
erase text unit list area (SJSMETUP) is zero.

SJSMETUP The address of the erase text unit list area. You can specify zero for
this value if the address of the erase text unit list area (SJSMETUS)
is zero.

SJSMJDVT Enter zero for this field on input. This field must contain zero on the
first SWBTU_MERGE call. On subsequent calls, the field contains
the value returned from the most recent SWBTU_MERGE call. Use
the value returned for subsequent calls.

SJSMWARN Set on to indicate that processing should continue after allowable
errors. Clear this field so that processing does not continue after
allowable errors. Allowable errors are described the section
“Merging SWBTUs” in z/OS MVS Programming: Authorized
Assembler Services Guide.

SJSMBYMV Set on to indicate whether the merge SWBTU text units should be
validated.

SJSMBYEV Set on to indicate whether the erase text units’ keys should be
validated.

SJSMSBTL When SJSMSWBA and SJSMSWBN contain values, this field must
contain the mapping of the base SWBTU pointer list. When
SJSMMTUP and SJSMMTUN contain values, this field must contain
the mapping of the merge SWBTU pointer list.

SJFREQ SWBTU_MERGE Output Parameters
Data for an SJFREQ SWBTU_MERGE function is returned in several fields of the
IEFSJSMP parameter list. The list of output parameters and their descriptions are
below.

SJSMREAS Contains a reason code returned from the SWBTU_MERGE
service. This field contains a value when register 15 contains a
return code other than zero.

SJSMAREA Contains a pointer to the output SWBTU.

SJSMTULN Contains the size of the output SWBTU. The size is the total size of
the prefix and all the text units.

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 61

SJSMMKER If a validation error occurred, this field contains the key from the
first merge SWBTU text unit in the merge SWBTU list where
SWBTU_MERGE encountered an error. Otherwise, this field
contains zero.

SJSMEKER If a validation error occurred, this field contains the key from the
first erase SWBTU in the erase SWBTU list where
SWBTU_MERGE encountered the error. Otherwise, this field
contains zero.

SJSMJDVT If a value is returned in this field, use the returned value in this field
for subsequent uses of the service.

SJSMRETC The return code from the service in which the error was
encountered.

SJSMERRS This field contains a value when certain errors occur. See Table 9
on page 69 for descriptions of the errors.

SJSMERRP The point in the base or merge SWBTU pointer list entry at which
an error was encountered.

SJFREQ SWBTU_MERGE ABEND Codes
SJFREQ SWBTU_MERGE might abnormally terminate with abend code X'054'. See
z/OS MVS System Codes for an explanation and programmer response for this
code.

SJFREQ SWBTU_MERGE Return and Reason Codes
SJFREQ SWBTU_MERGE return codes appear in register 15. When SJFREQ
returns control to your program, SJSMREAS contains a reason code if register 15
contains a nonzero value. Return and reason codes are defined in macro IEFSJRC.
The following table identifies the hexadecimal return and reason code combinations,
tells what each means, and recommends an action you should take. Table 9 on
page 69 lists and describes additional reason codes that appear in output field
SJSMERRS when certain errors occur.

Table 8. Return and Reason Codes for the SJSMREAS Macro

Return Code Reason Code Meaning and Action

0 000 Meaning : SWBTU_MERGE processing
completed successfully.

Action : None.

0 0CA Meaning : Program error. SWBTU_MERGE
processing completed successfully; however, the
value in SJSMMKER or SJSMEKER was ignored.
SJSMMKER or SJSMEKER contains a key in
error.

Action : Determine if it is acceptable for the
information in SJSMMKER or SJSMEKER to be
ignored.

0 0CB Meaning : Program error. SWBTU_MERGE
processing completed successfully; however, the
text unit count for the key that appears in
SJSMMKER is not valid. All data for this text unit
is ignored.

Action : Determine if it is acceptable for the text
unit data to be ignored.

SJFREQ Macro

62 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 8. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

0 1F4 Meaning : Program error. SWBTU_MERGE
processing completed successfully; however, a
text unit length in a length-value pair for the key
that appears in SJSMMKER is not valid. All data
for this text unit is ignored.

Action : Check the length specified for the key
that appears in SJSMMKER. Determine if it is
acceptable for the text unit to be ignored.

0 1F5 Meaning : Program error. SWBTU_MERGE
processing completed successfully; however, a
text unit value in a length-value pair for the key
that appears in SJSMMKER is not valid. All data
for this text unit is ignored.

Action : Check the value specified for the key that
appears in SJSMMKER. Determine if it is
acceptable for the text unit to be ignored.

0 1F6 Meaning : Program error. SWBTU_MERGE
processing completed successfully; however, a
numeric value of a length-value pair in a text unit
exceeds the maximum allowable value.
SJSMMKER contains the key from the text unit
that is in error. All data for this text unit is ignored.

Action : Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 1F7 Meaning : Program error. SWBTU_MERGE
processing completed successfully; however, a
numeric value of a length-value pair in a text unit
is less than the minimum allowable value.
SJSMMKER contains the key from the text unit
that is in error. All data for this text unit is ignored.

Action : Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 1FE Meaning : Program error. SWBTU_MERGE
processing completed successfully; however, a
character value level length in a text unit exceeds
the maximum allowed for character data.
SJSMMKER contains the key from the text unit
that is in error. All data for this text unit is ignored.

Action : Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 1FF Meaning : Program error. SWBTU_MERGE
processing completed successfully; however, the
number of levels for a character value in a text
unit exceeds the maximum allowed. SJSMMKER
contains the key from the text unit that is in error.
All data for this text unit is ignored.

Action : Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 63

Table 8. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

0 200 Meaning : Program error. SWBTU_MERGE
processing completed successfully; however, the
first character of the level in the character value in
a text unit is not valid for character data.
SJSMMKER contains the key from the text unit
that is in error. All data for this text unit is ignored.

Action : Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 201 Meaning : Program error. SWBTU_MERGE
processing completed successfully; however, a
character is not valid for character data. The
incorrect value is not the first character of the
level in the character value in a text unit.
SJSMMKER contains the key from the text unit
that is in error. All data for this text unit is ignored.

Action : Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 226 Meaning : Program error. SWBTU_MERGE
processing completed successfully; however, a
text unit contained a text character that is outside
the range X'40' - X'FE'. SJSMMKER contains the
key from the text unit that is in error. All data for
this text unit is ignored.

Action : Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 227 Meaning : SWBTU_MERGE processing
completed successfully; however, the sequence of
characters in a text unit is not valid. SJSMMKER
contains the key from the text unit that is in error.
All data for this text unit is ignored.

Action : Check the value specified in the text unit
parameter and determine if it is acceptable for the
text unit to be ignored.

0 228 Meaning : SWBTU_MERGE processing
completed successfully; however, there are bits
on in the text unit parameter that the system does
not recognize. SJSMMKER contains the key from
the text unit that is in error. All data for this text
unit is ignored.

Action : Check the value specified in the text unit
parameter and determine if it is acceptable for the
text unit to be ignored.

0 76C Meaning : SWBTU_MERGE processing
completed successfully. The resulting SWBTU
(pointed to by SJSMAREA) has a prefix and no
text units.

Action : None required. However, you might take
some action based on your application.

4 0C8 Meaning : Program error. The specified verb is not
defined to the system.

Action : Specify a valid verb.

SJFREQ Macro

64 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 8. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

4 0CA Meaning : Program error. The system does not
recognize the text unit key. SJSMMKER or
SJSMEKER contains the key from the text unit
that is in error. All data for this text unit is ignored.

Action : Check the text unit key. Correct the key
and issue the SJFREQ macro again.

4 0CB Meaning : Program error. The count in a text unit
is not valid. SJSMMKER contains the key for the
text unit that is not valid.

Action : Check the text unit count. Correct the
count and issue the SJFREQ macro again.

4 1F4 Meaning : Program error. A length in a
length-value pair in a text unit is not valid.
SJSMMKER contains the key for the text unit that
is not valid.

Action : Check the length. Correct the length and
issue the SJFREQ macro again.

4 1F5 Meaning : Program error. A text unit value in a
length-value pair is not valid. SJSMMKER
contains the key for the text unit that is not valid.

Action : Check the value. Correct the value and
issue the SJFREQ macro again.

4 1F6 Meaning : Program error. A numeric value of a
length-value pair in a text unit exceeds the
maximum allowable value. SJSMMKER contains
the key from the text unit that is in error.

Action : Check the value. Correct the value and
issue the SJFREQ macro again.

4 1F7 Meaning : Program error. A numeric value of a
length-value pair in a text unit is less than the
minimum allowable value. SJSMMKER contains
the key from the text unit that is in error.

Action : Check the value. Correct the value and
issue the SJFREQ macro again.

4 1FE Meaning : Program error. A character value level
length in a text unit exceeds the maximum
allowed for character data. SJSMMKER contains
the key from the text unit that is in error.

Action : Check the value specified in the text unit.
Correct the value and issue the SJFREQ macro
again.

4 1FF Meaning : Program error. The number of levels for
a character value in a text unit exceeds the
maximum allowed. SJSMMKER contains the key
from the text unit that is in error.

Action : Check the value specified in the text unit.
Correct the value and issue the SJFREQ macro
again.

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 65

Table 8. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

4 200 Meaning : Program error. A character in a text unit
is not valid for character data. The character is
the first character in the level in the text unit.
SJSMMKER contains the key from the text unit
that is in error.

Action : Check the value specified in the text unit.
Correct the value and issue the SJFREQ macro
again.

4 201 Meaning : Program error. A character is not valid
for character data. The character is not the first
character of the level in the character value in a
text unit. SJSMMKER contains the key from the
text unit that is in error.

Action : Check the value specified in the text unit.
Correct the value and issue the SJFREQ macro
again.

4 206 Meaning : A text unit key contained hex zeros.

Action : Check the text unit key value specified in
the text unit. Correct the value and issue the
SJFREQ macro again.

4 226 Meaning : Program error. A text unit contained a
text character that is outside the range X'40' -
X'FE'. SJSMMKER contains the key from the text
unit that is in error.

Action : Check the value specified in the text unit.
Correct the value and issue the SJFREQ macro
again.

4 227 Meaning : The sequence of characters in a text
unit is not valid. SJSMMKER contains the key
from the text unit that is in error.

Action : Check the value specified in the text unit
parameter. Correct the value and issue the
SJFREQ macro again.

4 228 Meaning : There are bits on in the parameter that
the system does not recognize. SJSMMKER
contains the key from the text unit that is in error.

Action : Check the value specified in the text unit
parameter. Correct the value and issue the
SJFREQ macro again.

4 76D Meaning : Program error. The output area
(identified by SJSMAREA and SJSMSIZE) is not
large enough for the resulting SWBTU.

Action : Increase the size of the output area and
issue the SJFREQ macro again.

SJFREQ Macro

66 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 8. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

4 76E Meaning : Program error. One of the following
occurred:

v The base SWBTU pointer list address
(SJSMSWBA) is zero and the number of
SWBTU pointers (SJSMSWBN) in the base
pointer list is not zero

v The SWBTU pointer list address is not zero
and the number of SWBTU pointers in the
base pointer list is zero.

Action : Supply the correct values for SJSMSWBA
and SJSMSWBN and issue the SJFREQ macro
again.

4 76F Meaning : Program error. One of the following
occurred:

v The merge SWBTU pointer list address
(SJSMMTUP) is zero and the number of
SWBTU pointers (SJSMMTUN) in the merge
pointer list is not zero

v The merge SWBTU pointer list address is not
zero and the number of SWBTU pointers in the
merge pointer list is zero.

Action : Supply the correct values for SJSMMTUP
and SJSMMTUN and issue the SJFREQ macro
again.

4 770 Meaning : Program error. One of the following
occurred:

v The erase text unit address (SJSMETUP) is
zero and the size of the erase text unit list area
(SJSMETUS) is not zero

v The erase text unit address (SJSMETUP) is
not zero and the size of the erase text unit list
area (SJSMETUS) is zero.

Action : Supply the correct values for SJSMETUP
and SJSMETUS and issue the SJFREQ macro
again.

4 771 Meaning : Program error. Either the output area
address (SJSMAREA) is zero or the output area
size (SJSMSIZE) is not greater than zero.

Action : Check the values in SJSMAREA and
SJSMSIZE and determine which is incorrect.
Specify valid values and issue the SJFREQ
macro again.

4 772 Meaning : Program error. One of the following
happened:

v Neither a base SWBTU nor a modify SWBTU
were specified (SJSMSWBA and SJSMMTUP
are both zero).

v A base SWBTU was provided, but no modify
SWBTU and no erase list were provided
(SJSMMTUP and SJSMETUP are zero).

Action : Do one of the following:

v Specify a base or modify SWBTU.

v If a base SWBTU was provided, specify either
a modify SWBTU or an erase list.

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 67

Table 8. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

4 773 Meaning : Program error. The verb name in the
merge SWBTU list does not match the verb name
in the base SWBTU list.

Action : Supply input for the same verb in both
the base SWBTU list and the merge SWBTU list.

4 774 Meaning : Program error. One of the following
occurred:

v The version number (SJSMVERS) supplied in
the parameter list does not match the version
defined in macro IEFSJSMP

v The length (SJSMLEN) supplied in the
parameter list does not match the actual
length.

Action : Ensure that the constant SJSMCVER is
used in field SJSMVERS of the input parameter
list and that the constant SJSMLGTH is used in
field SJSMLEN of the input parameter list.

4 7A1 Meaning : Program error. The base SWBTU list
contains an error.

Action : Check output fields SJSMERRP and
SJSMERRS. SJSMERRP contains the address of
a SWBTU that is in error. SJSMERRS may
contain a reason code that indicates an error in
the base or merge SWBTU list. See Table 9 on
page 69 for the reason code descriptions.

0C 000 Meaning : System error. The system could not
obtain storage for this request.

Action : Inform your system programmer of this
problem.

10 000 Meaning : System error. The ESTAE-type
recovery routine failed.

Action : Inform your system programmer of this
problem.

14 000 Meaning : System error. SJF encountered a
condition that caused an abnormal termination.

Action : Check the input parameters, particularly
any pointer fields, to determine if the input values
are correct.

18 000 Meaning : System error. The service routines for
SJFREQ are not available.

Action : SJF did not initialize properly. Contact the
appropriate IBM support personnel.

Output field SJSMERRS contains a reason code when certain errors occur. Table 9
on page 69 lists the reason codes and their meanings.

SJFREQ Macro

68 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 9. Return and Reason Codes for the SJFREQ Macro SWBTU_MERGE Service

Return Code Reason Code Meaning and Action

4 018 Meaning : Program error. The application did not
supply either the base SWBTU list or the merge
SWBTU list.

Action : Determine which list is missing. Supply
the missing list and issue the SJFREQ macro
again.

4 019 Meaning : Program error. The prefix for either the
base SWBTU list or merge SWBTU list is not
valid.

Action : Determine which prefix is not valid.
Supply the correct prefix and issue the SJFREQ
macro again.

4 028 Meaning : Program error. The verb and label
values in either the base SWBTU list or the
merge SWBTU list do not match.

Action : Determine which pair does not match.
Correct the information and issue the SJFREQ
macro again.

SJFREQ VERIFY Service
Use VERIFY to validate and build text units to represent an OUTDES statement, its
operands, subparameters and sublist elements. The OUTDES information
corresponds to SJF-defined information on the OUTPUT JCL statement. If you do
not specify correctly the input subparameter data, VERIFY returns an error
message.

SJFREQ VERIFY Input Parameters
For each SJFREQ invocation, you need to initialize certain fields of parameter list
IEFSJVEP. See SJVEP in z/OS MVS Data Areas, Vol 4 (RD-SRRA) for the
mapping provided by the IEFSJVEP mapping macro. The list of parameters and
descriptions of their values are below, followed by Table 10 that summarizes the
required parameter fields for the three SJFREQ VERIFY functions.

VERIFY performs three functions. Use Table 10 to determine the required
parameters for the SJFREQ VERIFY function you want to request. The table gives
details about the required values.

SJVEID The identifier ‘SJVE’ of the VERIFY parameter list. Assign the
symbolic equate SJVECID to this field.

SJVEVERS The current version number of the SJFREQ VERIFY parameter list.
Assign the symbolic equate SJVECVER to this field.

SJVEFLAG The environment control flag.

SJVENOCU Indicates whether the SJF environment is preserved
from call to call or obtained for each call. Parameter
SJVESTOR references the environment. When set
to 0, the environment is obtained for each call.
When set to 1, the environment is preserved.

SJVEUNAU Indicates whether the caller is unauthorized. If an

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 69

application makes repetitive service calls using the
same SJF environment, the authorization must be
same for each call.

SJVELEN The length of the VERIFY parameter list (IEFSJVEP). Assign the
symbolic equate SJVELGTH to this field.

SJVESTOR The local working storage pointer or zero. This field must contain
zero on the first VERIFY call. On subsequent calls, the field
contains the value returned from the most recent VERIFY call.

SJVEJDVT Enter zero for this field on input. If a value is returned in the field,
use the returned value for subsequent uses of the service.

SJVECMND The name of the statement that contains the output descriptor
information. Specify the statement name OUTDES in an 8-character
field, left-justified, and padded with blanks.

SJVEOPEP The pointer to the operand or keyword operand to be validated.
This field should contain an address of the first byte of the operand
or keyword operand. Set the length of the operand in SJVEOPEL.
Zero is a valid value when specifying just the statement name as
specified in SJVECMND.

SJVEOPEL The length of the operand or keyword operand to be validated. This
field should contain the actual length of the operand or keyword
operand pointed to by SJVEOPEP.

SJVEPARM The subparameter number representing the subparameter to be
validated. Set this value to one whenever validating an operand.
When validating a keyword operand, set this to the correct
subparameter number.

SJVESUBL The sublist element number representing the sublist element to be
validated. This field should be set to zero if the subparameter is not
a sublist.

SJVEPRMP The pointer to the subparameter or sublist element to be validated.
Set the length of the subparameter or sublist element in
SJVEPRML.

SJVEPRML The length of the subparameter or sublist element pointed to by
SJVEPRMP. This field should contain the actual length of the
subparameter or sublist element pointed to by SJVEPRMP.

SJVETUBL The length of the text unit output area. The field should contain the
length of the output area pointed to by SJVETUBP. The minimum
you should specify for the output area is 256 bytes plus sufficient
storage to accommodate the text units that will be built as a result
of your VERIFY request. A work area of 1K is large enough for any
set of text units to be built.

SJVETUBP The pointer to the text unit output area. The output area will contain
the text unit pointer list and text units upon return from the VERIFY
service call. If the output area is not large enough to hold all the
text units and the text unit pointer list, you can point to and use an
additional output area. When using additional output areas, the
original output area must be accessible to SJF; it cannot be freed
or changed. Set the length of the output area in SJVETUBL.

SJVEFLG1 The VERIFY option flag.

SJVELSTC Indicates last call for the text units being built. Set

SJFREQ Macro

70 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

this indicator to one for the last VERIFY call.
Setting this indicator on makes the text units
available for use.

SJVERSBS Indicates that the same text unit output area is to
be used for multiple calls. SJVETUBS contains the
returned length of the area the service used to build
the text units and text unit pointer list. When this
indicator is on, SJVETUBP must be the same for
each VERIFY call.

SJVEQUOT Indicates that a subparameter was specified in
quotes. To allow quotes on all subparameters, the
caller can set this bit to zero. Note that some
subparameters do not allow quotes. For any value
specified in quotes, the caller should have:
v Removed the delimiting quotes
v Converted two consecutive single quotes to one

single quote.

SJVEPRFX The prefix to be concatenated to a subparameter that is a data set
name. This field is not used if SJVEQUOT is on or if the
subparameter is not defined as allowing unqualified data set
names. If no prefix is specified, this field must be set to zero.

Table 10. Required Fields for SJFREQ VERIFY Functions

IEFSJVEP
parameter list
field

Validate a subparameter or sublist
element and build a text unit

Validate an operand or keyword
operand

Validate a
statement name

SJVEID Symbolic equate SJVECID Symbolic equate SJVECID Symbolic equate
SJVECID

SJVEVERS Symbolic equate SJVECVER Symbolic equate SJVECVER Symbolic equate
SJVECVER

SJVENOCU Set to indicate if the SJF
environment should be reused.

Set to indicate if the SJF
environment should be reused.

Set to indicate if
the SJF
environment
should be reused.

SJVEUNAU Set to indicate if the caller is
authorized.

Set to indicate if the caller is
authorized.

Set to indicate if
the caller is
authorized.

SJVELEN Symbolic equate SJVELGTH Symbolic equate SJVELGTH Symbolic equate
SJVELGTH

SJVESTOR Local working storage pointer or zero Local working storage pointer or zero Local working
storage pointer or
zero

SJVECMND Statement name associated with the
operand for which the subparameter
or sublist is to be validated.

Statement name associated with the
operand to be validated.

Statement name
to be validated.

SJVEOPEP Address of the field that contains the
subparameter or sublist element to
be validated.

Address of the field that contains the
operand or keyword operand to be
validated.

zeros

SJVEOPEL Length of the field that contains the
subparameter or sublist element
(SJVEOPEP).

Length of the field that contains the
operand or keyword operand to be
validated (SJVEOPEP).

not used

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 71

Table 10. Required Fields for SJFREQ VERIFY Functions (continued)

IEFSJVEP
parameter list
field

Validate a subparameter or sublist
element and build a text unit

Validate an operand or keyword
operand

Validate a
statement name

SJVEPARM Number of the subparameter to be
verified (1 for the first, 2 for the
second, . . .)

zeros zeros

SJVESUBL If the subparameter to be verified is a
sublist, specify the number of the
sublist element (1 for the first, 2 for
the second,. . .). If the subparameter
is not a sublist, specify zero.

not used not used

SJVEPRMP Address of the field with the
subparameter or sublist to be
verified.

not used not used

SJVEPRML Length of the subparameter or sublist
to be verified.

not used not used

SJVETUBL Length of the SJFREQ VERIFY
workarea.

not used not used

SJVETUBP Pointer to the SJFREQ VERIFY
workarea.

not used not used

SJVELSTC Last call bit not used not used

SJVEQUOT Subparameters can be specified in
quotes.

not used not used

SJVERSBS Text unit buffer is to be used for
multiple calls.

not used not used

SJVEPRFX Prefix to be concatenated to a
subparameter.

not used not used

SJFREQ VERIFY Output Parameters
Data for an SJFREQ VERIFY function is returned in several fields of the IEFSJVEP
parameter list. The list of output parameters and their descriptions are below,
followed by Table 11 on page 73 that summarizes the output parameters returned
for each of the three SJFREQ VERIFY functions.

SJVEREAS The reason code returned from VERIFY processing. See Return
and Reason Codes with Related Message Text for information
about specific reason codes.

SJVEJDVT If the caller specified zero on input, this field contains the default
JDVT name. Otherwise, the value in this field will be the same as it
was on input.

SJVETUBS The length of the storage used in the text unit output area to build
the text unit pointer list and text units. This field is filled in only
when SJVERSBS is set on. The text unit output area is referenced
by fields SJVETUBL and SJVETUBP.

SJVETUPL The pointer to the beginning of the text unit pointer list in the text
unit output area.

SJVEOPD The SJF description of the operand or keyword operand that was
referenced on input by the fields SJVEOPEP and SJVEOPEL.
Applications can use information in this field in messages to their
application users in place of the operand or keyword operand.

SJFREQ Macro

72 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Refer to “Operand Descriptions” for the operands and their
descriptions. VERIFY returns a value in this field for return code 0
and reason codes with return code 4.

SJVEOPDL The length of the operand or keyword operand description returned
in field SJVEOPD.

SJVEMSGL The length of the message information returned in SJVEMSG.

SJVEMSG This field contains a message that indicates the correct syntax for
the subparameter or sublist element that is in error. The
subparameter or sublist element is referenced by the input fields
SJVEPRMP and SJVEPRML. VERIFY returns a value in this field
for return code 4 with some reason codes. Refer to “Return and
Reason Codes with Related Message Text” on page 75 for the
actual message text VERIFY returns.

When an application receives a return code of 0 or 4, VERIFY returns values in the
parameter list fields indicated below. The table is organized by function and return
code. VERIFY does not fill in any output parameter list fields when it returns a
return code 8 or above.

Table 11. SJFREQ VERIFY Output Fields

IEFSJVEP
parameter list
field

Validate a
subparameter
or sublist
element and
build a text
unit Return
Code 0

Validate a
subparameter
or sublist
element and
build a text
unit Return
Code 4

Validate an
operand or
keyword
operand
Return Code 0

Validate an
operand or
keyword
operand
Return Code 4

Validate a
statement
name Return
Code 0

Validate a
statement
name Return
Code 4

SJVEREAS Value returned Value returned Value returned Value returned Value returned Value returned

SJVEJDVT Value returned Value returned Value returned Value returned Value returned Value returned

SJVETUBS Value returned
only when
SJVERSBS is
set to 1.

— — — — —

SJVETUPL Value returned Value returned
for some
reason codes.

— — — —

SJVEOPD Value returned Value returned
for some
reason codes.

Value returned — — —

SJVEOPDL Value returned Value returned
for some
reason codes.

Value returned — — —

SJVEMSGL — Value returned
for some
reason codes.

— — — —

SJVEMSG — Value returned
for some
reason codes.

— — — —

Operand Descriptions
Operand descriptions appear in parameter list field SJVEOPD as indicated in
Table 11. The table that follows lists the operands, keyword operands and their

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 73

descriptions.

Table 12. SJF Operand and Keyword Operand Descriptions. These descriptions appear in
parameter field SJVEOPD.

Operand or
Keyword Operand

Description

ADDRESS ADDRESS FOR SEPARATOR PAGE

BUILDING BUILDING ID

BURST BURSTER TRIMMER STACKER

NOBURST BURSTER TRIMMER STACKER

CHARS CHARACTER ARRANGEMENT TABLE

CKPTLINE CHECKPOINT LINES

CKPTPAGE CHECKPOINT PAGES

CKPTSEC CHECKPOINT SECONDS

CLASS OUTPUT CLASS

COMPACT COMPACTION TABLE NAME

CONTROL CARRIAGE CONTROL

COPIES NUMBER OF COPIES

DATACK DATA CHECK

DEFAULT DEFAULT OUTPUT DESCRIPTOR

NODEFAULT DEFAULT OUTPUT DESCRIPTOR

DEPT DEPARTMENT ID

DEST OUTPUT DESTINATION

DPAGELBL DATA PAGE LABEL

NODPAGELBL DATA PAGE LABEL

FCB FORMS CONTROL IMAGE

FLASH FORMS OVERLAY

FORMDEF FORM DEFINITION MEMBER NAME

FORMS PRINT FORMS

GROUPID OUTPUT GROUP IDENTIFIER

INDEX RIGHT PRINT POSITION INDEX

LINDEX LEFT PRINT POSITION INDEX

LINECT LINE COUNT

MODIFY COPY MODIFICATION MODULE

NAME NAME OF SYSOUT OWNER

NOTIFY DESTINATION FOR PRINT COMPLETE MESSAGES

OUTBIN PRINTER OUTPUT BIN ID

OUTDISP SYSOUT DISPOSITION

PAGEDEF PAGE DEFINITION MEMBER NAME

PIMSG PRINTER INFORMATION MESSAGES

PRMODE PROCESS MODE

PRTY OUTPUT PRIORITY

ROOM ROOM IDENTIFICATION

SYSAREA SYSTEM PRINTABLE AREA

NOSYSAREA SYSTEM PRINTABLE AREA

THRESHLD MAXIMUM LINES OF OUTPUT

TITLE NAME FOR SEPARATOR PAGE

TRC TABLE REFERENCE CHARACTER

SJFREQ Macro

74 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 12. SJF Operand and Keyword Operand Descriptions (continued). These
descriptions appear in parameter field SJVEOPD.

Operand or
Keyword Operand

Description

NOTRC TABLE REFERENCE CHARACTER

UCS UNIVERSAL CHARACTER SET

USERLIB USER SPECIFIED AFP RESOURCE LIBRARIES

WRITER EXTERNAL WRITER NAME

ABEND Codes
SJFREQ VERIFY might abnormally terminate with abend code X'054'. See z/OS
MVS System Codes for an explanation and programmer response.

Return and Reason Codes with Related Message Text
SJFREQ VERIFY return codes appear in register 15. When SJFREQ returns control
to your program, SJVEREAS contains a reason code. Return and reason codes are
defined in macro IEFSJRC. The following table identifies the hexadecimal return
and reason code combinations, tells what each means, and recommends an action
you should take. Message text returned in field SJVEMSG appears with the
meanings and actions for the related reason codes. Italics indicates variable parts
of the message. Words in bold print indicate that VERIFY selects among those
choices before returning the message.

For return code 4, reason codes 1F4 - 204, 226, and 4B3, the subparameter or
sublist element referenced in SJVEPRMP and SJVEPRML is not correct. For each
of these conditions, a description of the correct specification of the field is returned
in SJVEMSG. The related message text appears with the appropriate reason codes
that follow. SJVEOPD contains a description of the operand or keyword operand.
Table 12 on page 74 lists the operands and keyword operands and their
descriptions.

Table 13. Return and Reason Codes for the SJFREQ Macro VERIFY Service

Return Code Reason Code Meaning and Action

0 000 Meaning : VERIFY processing completed
successfully.

Action : None.

04 004 Meaning : Program error. The VERIFY request
was not processed. The value specified in
SJVEJDVT is not valid.

Action : Set SJVEJDVT to hexadecimal zeros or
to the value returned on the previous call.

04 005 Meaning : System error. The information
referenced by parameter field SJVEJDVT does
not exist.

Action : SJF did not initialize properly. Contact the
appropriate IBM support personnel.

04 0CB Meaning : Program error. SJF does not recognize
the subparameter specified in SJVEPARM.

Action : Check the number of subparameters
allowed and the value specified in SJVEPARM.

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 75

Table 13. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 0CF Meaning : Program error. The command specified
in SJVECMND is not recognized by SJF.

Action : Check the spelling and specification
(left-justified, padded with blanks) of the value
specified in SJVECMND.

04 0D0 Meaning : Program error. The operand or keyword
operand indicated by fields SJVEOPEP and
SJVEOPEL is not recognized by SJF.

Action : Check the specified length and the
spelling of the operand or keyword operand.
Make sure SJVEOPEP is a pointer value.

04 1F4 Meaning : Program error. The length of a
specified subparameter or sublist element as
specified in SJVEPRML is not valid.

Action : Check the subparameter or sublist
element length specified in SJVEPRML and the
allowable subparameter or sublist element length.

Message text :

VALUE MUST BE 1 CHARACTER

VALUE MUST BE n CHARACTERS

VALUE MUST BE minimum length TO maximum
length CHARACTERS

If an error occurs involving a subparameter that is
a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

04 1F5 Meaning : Program error. A subparameter that
was specified is not a valid choice.

Action : Specify one of the allowable
subparameters for the keyword operand.

Message text :

VALUE MUST BE choice1. . .OR choice n

04 1F6 Meaning : Program error. A numeric subparameter
or sublist element exceeds the maximum
allowable value.

Action : Check the values specified in
SJVEPRMP and SJVEPRML and the allowable
value for this subparameter or sublist element.

Message text :

VALUE MUST BE IN THE RANGE OF minimum
value TO maximum value

SJFREQ Macro

76 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 13. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 1F7 Meaning : Program error. A numeric subparameter
or sublist element is less than the minimum
allowable value.

Action : Check the values specified in
SJVEPRMP and SJVEPRML and the allowable
value for this subparameter or sublist element.

Message text :

VALUE MUST BE IN THE RANGE OF minimum
value TO maximum value

04 1FA Meaning : Program error. No subparameter or
sublist element was specified for the keyword
operand.

Action : Specify a value in SJVEPRML.

Message text :

VALUE MUST BE 1 LEVEL

VALUE MUST BE 1 TO maximum number of
levels LEVELS

VALUE MUST BE 1 TO maximum number of
levels LEVELS WITH 1 TO maximum level length
CHARACTERS IN EACH LEVEL

VALUE MUST BE 1 CHARACTER

VALUE MUST BE n CHARACTERS

VALUE MUST BE minimum length TO maximum
length CHARACTERS

If an error occurs involving a subparameter that is
a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

VALUE MUST BE choice1. . .OR choice n

VALUE MUST BE HEXADECIMAL CHARACTER,
CHARACTERS

VALUE MUST BE NUMERIC CHARACTER

VALUE MUST BE NUMERIC CHARACTERS

PRINTABLE CHARACTER, CHARACTERS

VALUE MUST BE SPECIFIED WITH THE
keyword KEYWORD

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 77

Table 13. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 1FE Meaning : Program error. The subparameter or
sublist element level length exceeds the
maximum allowed for character data.

Action : Check the value in SJVEPRML.

Message text :

VALUE MUST BE 1 LEVEL

VALUE MUST BE 1 TO maximum number of
levels LEVELS

VALUE MUST BE 1 TO maximum number of
levels LEVELS WITH 1 TO maximum level length
CHARACTERS IN EACH LEVEL

If an error occurs involving a subparameter that is
a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

04 1FF Meaning : Program error. The number of levels for
a subparameter or sublist element exceeds the
maximum allowed.

Action : Check the value pointed to by
SJVEPRMP.

Message text :

VALUE MUST BE 1 LEVEL

VALUE MUST BE 1 TO maximum number of
levels LEVELS

VALUE MUST BE 1 TO maximum number of
levels LEVELS WITH 1 TO maximum level length
CHARACTERS IN EACH LEVEL

If an error occurs involving a subparameter that is
a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

SJFREQ Macro

78 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 13. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 200 Meaning : Program error. The first character of the
level in the subparameter or sublist element is not
valid for character data.

Action : Check the value pointed to by
SJVEPRMP.

Message text :

VALUE MUST BE ALPHABETIC , NUMERIC,
NATIONAL , OR list of special characters FIRST
CHARACTER

VALUE MUST BE ALPHABETIC , NUMERIC,
NATIONAL , OR list of special characters
CHARACTER

VALUE MUST BE ALPHABETIC , NUMERIC,
NATIONAL , OR list of special characters
CHARACTERS

VALUE CONTAINS INVALID FIRST CHARACTER

If an error occurs involving a subparameter that is
a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

04 201 Meaning : Program error. A character other than
the first character of the level in the subparameter
or sublist element is not valid for character data.

Action : Check the value pointed to by
SJVEPRMP.

Message text :

VALUE MUST BE ALPHABETIC, NUMERIC,
NATIONAL OR, list of special characters
CHARACTERS OTHER THAN THE FIRST

VALUE MUST BE ALPHABETIC, NUMERIC,
NATIONAL , OR list of special characters
CHARACTER

VALUE MUST BE ALPHABETIC, NUMERIC,
NATIONAL , OR list of special characters
CHARACTERS

If an error occurs involving a subparameter that is
a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 79

Table 13. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 202 Meaning : Program error. The level specification is
not valid.

Action : Check the value pointed to by
SJVEPRMP.

Message text :

VALUE MUST BE 1 LEVEL

VALUE MUST BE 1 TO maximum number of
levels LEVELS

VALUE MUST BE 1 TO maximum number of
levels LEVELS WITH 1 TO maximum level length
CHARACTERS IN EACH LEVEL

If an error occurs involving a subparameter that is
a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

04 203 Meaning : Program error. Nonhexadecimal
characters were specified for a subparameter or
sublist element.

Action : Check the value pointed to by
SJVEPRMP.

04 204 Meaning : Program error. Nonnumeric characters
were specified for a subparameter or sublist
element.

Action : Check the value pointed to by
SJVEPRMP.

Message text :

VALUE MUST BE NUMERIC CHARACTER,
CHARACTERS

04 226 Meaning : Program error. A text character that
was specified for a subparameter or sublist
element is not valid.

Action : Check the value pointed to by
SJVEPRMP.

Message text :

VALUE MUST BE PRINTABLE CHARACTER,
CHARACTERS

04 229 Meaning : A keyword operand specified was not a
valid choice.

Action : Specify one of the allowable keyword
operands.

Message text :

VALUE IS NOT AN ALLOWABLE KEYWORD
OPERAND

SJFREQ Macro

80 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 13. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 4B0 Meaning : Program error. No statement was
specified. The value specified for SJVECMND is
zero.

Action : Specify a statement in SJVECMND.

04 4B1 Meaning : Program error. No address was
specified in SJVETUBP for the text unit output
area.

Action : Specify a value in SJVETUBP.

04 4B2 Meaning : Program error. There is not enough
storage in the text unit output area to construct
the text unit for the current value.

Action : Increase the size of the output area,
adjust SJVETUBP and SJVETUBL, and call
VERIFY again with the same input.

04 4B3 Meaning : Program error. A subparameter or
sublist element cannot be specified in quotes.
SJVEQUOT is set on, but quotes are not allowed
for the specified subparameter or sublist element.

Action : Either set SJVEQUOT off or specify a
value for which quotes are allowed.

Message text :

VALUE CANNOT BE SPECIFIED IN QUOTES

04 4B4 Meaning : Program error. The text unit output area
is different than the text unit output area passed
on the first call. SJVETUBP has a different value
than on the first call, and SJVERSBS is set on.
SJF cannot obtain the amount of contiguous
storage necessary for the text unit pointer list and
text units when more than one buffer is provided.

Action : Check the value in SJVETUBP.

08 000 Meaning : Program error. The input parameter list,
IEFSJVEP, is not valid.

Action : Check to see if SJVEID, SJVEVERS, or
SJVELEN is incorrect and not recognized by SJF.

0C 000 Meaning : System error. The system could not
obtain storage for this request.

Action : Inform your system programmer of this
problem.

10 000 Meaning : System error. The ESTAE-type
recovery routine failed.

Action : Inform your system programmer of this
problem.

14 000 Meaning : System error. SJF encountered a
condition that caused an abnormal termination.

Action : Check the input parameters, particularly
any pointer fields, to determine if the input values
are correct.

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 81

Table 13. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

18 000 Meaning : System error. The service routines for
SJFREQ are not available.

Action : SJF did not initialize properly. Contact the
appropriate IBM support personnel.

SJFREQ TERMINATE Service
TERMINATE frees the environment established by an SJF service. TERMINATE
performs no other function.

SJFREQ TERMINATE Input Parameters
IEFSJREP, IEFSJSMP, or IEFSJVEP. The field SJVESTOR must contain a pointer
to the SJF environment to be freed.

Return and Reason Codes
Return codes appear in register 15. The hexadecimal return codes from the
SJFREQ TERMINATE service are as follows.

Table 14. Return Codes from the SJFREQ TERMINATE Service

Return Code Meaning and Action

00 Meaning : TERMINATE processing completed successfully.

Action : None

08 Meaning : Program error. The parameter list is not valid.

Action : Check to see if SJVEID, SJVEVERS, or SJVELEN is incorrect and
not recognized by SJF.

14 Meaning : Program or system error. An abnormal termination occurred.

Action : Check the input parameters, particularly any pointer fields, to
determine if the input values are correct.

18 Meaning : System error. The service routines for SJFREQ are not available.

Action : SJF did not initialize properly. Contact the appropriate IBM support
personnel.

Example
Invoke the VERIFY service to:

v Validate the syntax of the statement OUTDES, the keyword operand CHARS,
and the subparameter (GT10)

v Build text units for the valid keyword operand and subparameter.
OUTDES out1 CHARS(GT10)

Use the label out1 for the OUTDES statement in this example. The statement is to
be converted into text units and used as input to OUTADD, the dynamic output
macro.

* This program segment has attributes that allow the defined *
* storage to be altered. *

* *

SJFREQ Macro

82 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

* Set up SJVEP, VERIFY parameter list area. *
* *

*

XC SJVEP(SJVELGTH),SJVEP Clear the parameter list
MVC SJVEID,=A(SJVEPEYE) Parameter list ID
MVI SJVEVERS,SJVECVER Parameter list version
OI SJVEFLAG,SJVENOCU Indicate no cleanup to SJF on this

* call, another call to SJF is
* expected.

LA R4,SJVELGTH Get parameter list length
STH R4,SJVELEN Set parameter list length

*
* SJVESTOR and SJVEJDVT are properly
* set at zero from XC instruction.
*

* *
* Set up statement and operand information. *
* *

*

MVC SJVECMND,STATMNT Set statement name field to OUTDES
ST R2,SJVEOPEP Set the operand pointer
LR R15,R3 Get pointer to last operand

* character
SR R15,R2 Get difference from first operand

* character
LA R15,1(R15) Add 1 to get proper operand length
STH R15,SJVEOPEL Set operand length

*

* *
* Set up subparameter information. *
* *

*

LA R15,1 Set up for first subparameter
STC R15,SJVEPARM Set subparameter number to 1
ST R4,SJVEPRMP Set the subparameter pointer
LR R15,R5 Get pointer to last subparameter

* character
SR R15,R4 Get difference from first

* subparameter character
LA R15,1(R15) Add 1 to get proper subparameter

* length
STH R15,SJVEPRML Set the subparameter pointer

*

* *
* Set up output area information. *
* *

*

LA R15,AREASIZE Get output work area length
STH R15,SJVETUBL Set text unit output area length
LA R15,OUTAREA Get address of output work area
ST R15,SJVETUBP Set text unit output area size

*

* *
* Set up Register 1 to point to a word of storage that *
* contains the address of SJVEP. *
* *

*

LA R4,SJVEP Address of

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 83

ST R4,SJVEPPTR the SJFREQ VERIFY
LA R1,SJVEPPTR parameter list

*

* *
* Invoke SJFREQ VERIFY service. *
* *

*

SJFREQ REQUEST=VERIFY Issue the SJF macro.
*

* *
* Check for a zero return code. *
* *

*

LTR R15,R15 Check service return code
BNZ SJFERR Go to nonzero return processing

*
*
*

* *
* In this portion of the example, a zero return and reason *
* code are received. The output fields from the service *
* contain the following information: *
* *
* Register 15 - contains zero. *
* *
* SJVEREAS - contains zero. *
* *
* SJVEOPD - this field contains the operand description *
* for CHARS: *
* "CHARACTER ARRANGEMENT TABLE" *
* *
* SJVEOPDL - this field contains the operand description *
* length - decimal 27. *
* *
* SJVETUPL - this field contains an address into OUTAREA *
* that is the start of the text unit pointer *
* list. *
* *
* OUTAREA - this area contains the text unit pointer *
* and the text unit that were built by VERIFY *
* for the CHARS(GT10) specification. *

*
* *
SJFERR DS 0H Label used for branch when SJFREQ
* VERIFY returns with a nonzero
* return code.
*
* Code to handle SJFREQ errors
*

* *
* Storage definitions *
* *

*

IEFSJVEP DSECT=NO SJFREQ VERIFY parameter list area
*
SJVEPPTR DS A Field used to contain SJVEP address
*
*
OUTAREA DS XL1024 Area used by SJFREQ VERIFY to build

SJFREQ Macro

84 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

* text units for valid operands and
* subparameters.
*
AREASIZE EQU *-OUTAREA Size of AREA
*

* *
* Equates and Constants *
* *

*
R0 EQU 0 Register 0
R1 EQU 1 Register 1
R2 EQU 2 Register 2
R3 EQU 3 Register 3
R4 EQU 4 Register 4
R5 EQU 5 Register 5
R6 EQU 6 Register 6
R7 EQU 7 Register 7
R8 EQU 8 Register 8
R9 EQU 9 Register 9
R15 EQU 15 Register 15
*
SJVEPEYE EQU C’SJVE’ VERIFY parameter list identifier
STATMNT DC CL8’OUTDES ’ Statement name
*

SJFREQ Macro

SJFREQ — Call Scheduler JCL Facility Services 85

SJFREQ Macro

86 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SPIE — Specify Program Interruption Exit

Description

Note: IBM recommends that you use the ESPIE macro rather than SPIE. Callers in
31-bit addressing mode must use the ESPIE macro, which performs the
same function as the SPIE macro for callers in both 24-bit and 31-bit
addressing mode.

The SPIE macro specifies the address of an interruption exit routine and the
program interruption types that are to cause the exit routine to get control.

Note: In MVS/370 the SPIE environment existed for the life of the task. In later
versions of MVS, the SPIE environment is deleted when the request block
that created it is deleted. That is, when a program running under a later
version of MVS completes, any SPIE environments created by the program
are deleted. This might create an incompatibility with MVS/SP Version 1 for
programs that depend on the SPIE environment remaining in effect for the
life of the task rather than the request block.

Each succeeding SPIE macro invocation completely overrides any previous SPIE
macro specifications for the task. The specified exit routine is given control in the
key of the TCB when one of the specified program interruptions occurs in any
problem program of the task. When a SPIE exit routine issues the SPIE macro, the
system resets (zeros) the program interruption element (PIE). Thus, a SPIE exit
routine should save any required PIE data before issuing a SPIE. If a caller issues
an ESPIE macro from within a SPIE exit routine, it has no effect on the contents of
the PIE. However, if an ESPIE macro deletes the last SPIE/ESPIE environment, the
PIE is freed and the SPIE exit cannot retry.

If the current SPIE environment is cancelled during SPIE exit routine processing,
the control program will not return to the interrupted program when the SPIE
program terminates. Therefore, if the SPIE exit routine wishes to retry within the
interrupted program, a SPIE cancel should not be issued within the SPIE exit
routine.

The SPIE macro can be issued by any problem program being executed in the
performance of the task. The control program automatically deletes the SPIE exit
routine when the request block (RB) that issued the SPIE macro terminates.

A PICA (program interruption control area) is created as part of the expansion of
SPIE. The PICA contains the exit routine’s address and a code indicating the
interruption types specified in SPIE.

For more information on the SPIE macro, see the sections on program interruption
services in z/OS MVS Programming: Assembler Services Guide and z/OS MVS
Programming: Authorized Assembler Services Guide.

The following description of the SPIE macro also appears in z/OS MVS
Programming: Assembler Services Reference ABE-HSP, with the exception of
interruption type 17. This interruption type designates page faults and its use is
restricted to an authorized program.

© Copyright IBM Corp. 1988, 2002 87

Environment
The requirements for the caller are:

Minimum authorization : To issue SPIE without encountering an abnormal end, callers
must be in problem state, with a PSW key value that is equal
to the TCB assigned key. To specify page fault processing,
the caller must be APF-authorized.

Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: 24-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : Must be in the primary address space

Programming Requirements
The caller must include the following mapping macros:
v IHAPIE
v IHAPICA

Restrictions
None.

Input Register Information
Before issuing the SPIE macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain the
following information:

Register Contents
0 Used as a work register by the system.
1 If a SPIE environment is already active when you issue the SPIE

macro, the SPIE service routine returns the address of the previous
PICA in register 1. You can use this PICA to restore the previously
active SPIE environment. However, if an ESPIE environment is
active when you issue the SPIE macro, the SPIE service returns
the address, in register 1, of a PICA in which the first word contains
binary zeros. You cannot modify the contents of this PICA, and it
contains no useful information except to restore the previous SPIE
or ESPIE environment. If no previous SPIE/ESPIE environment is
active, the service routine returns a zero in register 1.

2-13 Unchanged.
14-15 Used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

SPIE Macro

88 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The standard form of the SPIE macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SPIE.

SPIE

� One or more blanks must follow SPIE.

exit addr exit addr: A-type address, or register (2) - (12).
,(interrupts) interrupts: Decimal numbers 1-15, or 17 expressed as

single values : (2,3,4,7,8,9,10)
ranges of values : ((2,4),(7,10))
combinations : (2,3,4,(7,10))

Parameters
The parameters are explained as follows:

exit addr
Specifies the address of the exit routine to be given control when a specific
program interruption occurs. The exit routine receives control in 24-bit
addressing mode.

,(interrupts)
Indicates the type of interruption for which the exit routine is to be given control.
The interruption types are as follows:

Number Interruption Type
1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Data
8 Fixed-point overflow (maskable)
9 Fixed-point divide
10 Decimal overflow (maskable)

SPIE Macro

SPIE — Specify Program Interruption Exit 89

11 Decimal divide
12 Exponent overflow
13 Exponent underflow (maskable)
14 Significance (maskable)
15 Floating-point divide
17 Page fault

Notes:

1. If an exit address is zero or no parameters are specified, the current SPIE
and any previously active ESPIE environments are cancelled.

2. If a program interruption type is maskable, the corresponding program mask
bit in the PSW (program status word) is set to 1 when specified and to 0
when not specified. Interruption types that are not maskable and not
specified above are handled by the system, which forces an abend with the
program check as the completion code. If an ESTAE-type recovery routine
is also active, the SDWA indicates a system-forced abnormal termination.
The registers at the time of the error are those of the system.

3. If you are using vector instructions and an interruption of 8, 12, 13, 14, or
15 occurs, your recovery routine can check the exception extension code
(the first byte of the two-byte interruption code in the EPIE or PIE) to
determine whether the exception was a vector or scalar type of exception.

ABEND Codes
The SPIE macro might return the following abend codes:

X'10E'
X'30E'
X'46D'.

See z/OS MVS System Codes for explanations and programmer responses.

Return and Reason Codes
None.

Example
Give control to an exit routine for interruption 17. DOITSPIE is the address of the
SPIE exit routine.
SPIE DOITSPIE,(17)

SPIE—List Form
Use the list form of the SPIE macro to construct a control program parameter list in
the form of a program interruption control area.

Syntax
The list form of the SPIE macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SPIE.

SPIE

SPIE Macro

90 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

� One or more blanks must follow SPIE.

exit addr exit addr: A-type address.

,(interrupts) interrupts: Decimal numbers 1-15, or 17, expressed as
: single values : (2,3,4,7,8,9,10)
: ranges of values : ((2,4),(7,10))
: combinations : (2,3,4,(7,10))

,MF=L

Parameters
The parameters are explained under the standard form of the SPIE macro, with the
following exception:

,MF=L
Specifies the list form of the SPIE macro.

SPIE—Execute Form
A remote control program parameter list is used in, and can be modified by, the
execute form of the SPIE macro. The PICA (program interruptions control area) can
be generated by the list form of SPIE, or you can use the address of the PICA
returned in register 1 following a previous SPIE macro. If this macro is being issued
to reestablish a previous SPIE environment, code only the MF parameter.

The address of the remote control program parameter list associated with any
previous SPIE environment is returned by the SPIE macro.

Syntax
The execute form of the SPIE macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SPIE.

SPIE

� One or more blanks must follow SPIE.

exit addr exit addr: RX-type address, or register (2) - (12).

,(interrupts) interrupts: Decimal numbers 1-15, or 17, expressed as

SPIE Macro

SPIE — Specify Program Interruption Exit 91

single values : (2,3,4,7,8,9,10)
ranges of values : ((2,4),(7,10))
combinations : (2,3,4,(7,10))

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the SPIE macro, with the
following exception:

,MF=(E,ctrl,addr)
Specifies the execute form of the SPIE macro using a remote control program
parameter list.

Note: If SPIE is coded with a zero as the control address, the SPIE environment is
canceled.

SPIE Macro

92 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SPOST — Synchronize POST

Description
The SPOST macro is used in a cross memory post environment to ensure that all
outstanding cross memory post requests to the current address space have
completed. SPOST resolves a synchronization problem that arises when it becomes
necessary to free an ECB that is a potential target for a cross memory post request.
Before issuing SPOST, you must stop any new posts from being initiated.

For explanation of the parameters in a cross memory post request, see the POST
macro.

Environment
These are the requirements for the caller:

Minimum authorization : Supervisor state or PSW key 0-7 or APF authorized
Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : None

Programming Requirements
The caller must include the CVT mapping macro.

Restrictions
None.

Input Register Information
Before issuing the SPOST macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter or
using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

© Copyright IBM Corp. 1988, 2002 93

Performance Implications
None.

Syntax
The SPOST macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SPOST.

SPOST

� One or more blanks must follow SPOST.

Note: SPOST contains no optional or required parameters.

ABEND Codes
17B
27B
47B

See z/OS MVS System Codes for an explanation and programmer responses for
this code.

Return and Reason Codes
None.

Example
Execute the SPOST macro with a comment.
SPOST ,ISSUE SPOST

SPOST Macro

94 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SRBSTAT — Save, Restore, or Modify SRB Status

Description

Note: IBM recommends that you use the following macros rather than SRBSTAT:
v SUSPEND - Suspend Execution of an SRB
v RESUME - Resume or Purge a Suspended SRB

The SRBSTAT macro allows the caller to save, restore, and modify the status of an
SRB in a caller-supplied savearea. Control returns from the SRBSTAT macro in
primary ASC mode.

Environment
These are the requirements for the caller:

Minimum authorization : Supervisor state, key 0
Dispatchable unit mode : SRB for SAVE or RESTORE options.

SRB or TASK for MODIFY option.
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : Must be in primary address space

Programming Requirements
None.

Restrictions
The caller of SRBSTAT RESTORE must not change PASID before the request; the
RESTORE will restore the PASID saved by the earlier SAVE request.

Input Register Information
Before issuing the SRBSTAT macro, the caller must ensure that general purpose
register 13 points to a standard 72-byte save area addressable in primary mode.

Output Register Information
When control returns to the caller, the GPRs contain the following.

When SAVE is specified:

Register Contents
0 Unchanged
1 Used as a work register by the system
2-14 Unchanged
15 Return code

When RESTORE is specified:

Register Contents
0-13 Restored

© Copyright IBM Corp. 1988, 2002 95

14 Unchanged
15 Return code

When MODIFY is specified:

Register Contents
0-14 Unchanged
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Performance Implications
None.

Syntax
The SRBSTAT macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SRBSTAT.

SRBSTAT

� One or more blanks must follow SRBSTAT.

SAVE
RESTORE
MODIFY

,STSV=stsv addr stsv addr: RX-type address or register (1) - (12), register (1) preferred.

,STSV=0

,NEWFRR=addr addr: RX-type address or register (0) or (2) - (12), register (0) preferred.

,PRGAT=pat addr pat addr: RX-type address or register (2) - (12), register (2) preferred.

Parameters
The parameters are explained as follows:

SAVE
RESTORE

SRBSTAT Macro

96 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

MODIFY
Specifies whether a save, restore, or modify operation is requested. For SAVE
or RESTORE, only the following status is saved or restored:
v General and floating point registers
v Control registers 3 and 4
v CPU affinity mask
v Related ASID/TCB
v Timing information
v FRR stack
v PCLINK stack header

If SAVE is specified, only caller’s registers 1 and 15 are destroyed. Register 1 is
used to hold an FRR parameter area address if NEWFRR is also specified and
register 15 is used for a return code. The PCLINK stack header is saved and
zeroed.

If RESTORE is specified, registers 0-13 are restored. The contents of register
14 are the same as when RESTORE was entered. The current PCLINK stack
header must be zero; the saved one is restored.

If MODIFY is specified, registers 0-14 are unchanged and register 15 contains a
return code.

Notes:

1. On entry to RESTORE, the PCLINK stack header must be zero.

2. RESTORE cannot be used in an FRR.

3. RESTORE returns to its caller and not to the caller of SAVE.

4. SRBSTAT does not save and restore access registers, extended
authorization index (EAX) value, and linkage stack and access list status.

,STSV=stsv addr
Specifies the address of the savearea to be used for the SAVE, RESTORE, or
MODIFY operation. The size of this savearea is contained in field SVTSSTSV
of the SVT control block. The savearea can be in private pageable storage, but
it must be addressable from the home address space and it must begin on a
doubleword boundary. For RESTORE or MODIFY, the savearea must contain
valid status.

,STSV=0
Specifies that the current status is to be modified. This parameter is valid only
with MODIFY.

For MODIFY, an existing SRB status savearea or the current status is modified.
Only the purge ASID/TCB information can be modified. All registers are saved
and restored except register 15, which contains a return code.

Hexadecimal
Code

Meaning

00 The modify function was successfully completed.

,NEWFRR=addr
Specifies the address of an FRR established with MODE=FULLXM. For SAVE,
the address of the FRR parameter area is returned to the caller in register 1.
The first word of the parameter area contains the address of the SRB status
savearea being used.

SRBSTAT Macro

SRBSTAT — Save, Restore, or Modify SRB Status 97

For RESTORE, the FRR address is used only if the saved status cannot be
reinstated on the current processor. An SRB with the FRR option is scheduled
specifying this FRR.

For MODIFY, this parameter is invalid.

,PRGAT=pat addr
Specifies the address of a 6-byte area of storage, currently addressable in the
primary address space, that contains the new purge ASID/TCB. Bytes 1 and 2
contain the ASID; bytes 3-6 contain the TCB address. This parameter is
required with MODIFY but is invalid with SAVE or RESTORE.

ABEND Codes
05E

See z/OS MVS System Codes for an explanation and programmer responses for
this code.

Return and Reason Codes
None.

SRBSTAT Macro

98 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SRBTIMER — Establish Time Limit for System Service

Description
The SRBTIMER macro is used to establish a time limit for a system service running
in SRB mode. Time accumulates while the service is running; when the time limit
expires, the service abends with a system completion code of X’05B’. The service
can retry following the 05B ABEND.

The caller can cancel an established time limit by reissuing the macro and
specifying a time limit of zero. The caller can also override the established time limit
with a subsequent SRBTIMER macro.

Environment
These are the requirements for the caller:

Minimum authorization : Supervisor state and key 0
Dispatchable unit mode : SRB
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No requirement
Control parameters : Must be in primary address space

Programming Requirements
None.

Restrictions
None.

Input Register Information
Before issuing the SRBTIMER macro, the caller must ensure that general purpose
register 13 points to a standard 72-byte save area addressable in primary mode.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

© Copyright IBM Corp. 1988, 2002 99

Performance Implications
None.

Syntax
The SRBTIMER macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SRBTIMER.

SRBTIMER

� One or more blanks must follow SRBTIMER.

LIMIT=stor addr stor addr: RX-type address or register (0) or (2) - (12).

,ERRET=err rtn addr err rtn addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

LIMIT=stor addr
Specifies the virtual storage address of a doubleword field on a doubleword
boundary that contains the time limit. The time limit is in the form of a signed
64-bit binary number and must be positive in order for time to elapse. A
negative number causes immediate expiration of the time limit. Bit 51 of the
binary number is approximately equivalent to one microsecond. If you specify a
value greater than 208 days, the control program changes the value to 208
days. The resolution of the timer is model dependent. See Principles of
Operation for details concerning the timer facility.

,ERRET=err rtn addr
Specifies the address of the routine to be given control when the SRBTIMER
function encounters damaged clocks.

ABEND Codes
None.

Return Codes
When SRBTIMER macro returns control to your program, GPR 15 contains a
hexadecimal return code.

SRBTIMER Macro

100 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 15. Return Codes for the SRBTIMER Macro

Return Code Meaning and Action

00 Meaning : The time limit was successfully established.

Action : None.

10 Meaning : The issuer is not in SRB mode. No timing is performed.

Action : Ensure that the requesting program is running in SRB mode, or use
STIMER or STIMERM instead.

SRBTIMER Macro

SRBTIMER — Establish Time Limit for System Service 101

SRBTIMER Macro

102 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

STATUS — Stop, Start, or Put a Subtask in Process
Must-Complete Mode

Description
The STATUS macro with the START or STOP option starts or stops a subtask. The
STATUS macro with the SET or RESET option places a program in
process-must-complete mode or ends process-must-complete mode.
Process-must-complete mode postpones delays from the following:
v Asynchronous exits
v Status stops (by issuing the STATUS macro with the STOP option)
v Timer exits
v Dumping
v Swapping
v Attention exits

Process-must-complete mode prevents a CANCEL command from stopping a
program already running but it does not postpone external interrupts or interrupts
from I/O.

The description of the STATUS macro has two parts: the START/STOP option and
the SET/RESET option. z/OS MVS Programming: Assembler Services Reference
ABE-HSP describes the STATUS macro START and STOP options with the
exception of the SRB and ASID parameters. These parameters, which are available
only to supervisor state and key 0 callers, allow the caller to manipulate the
dispatchability status or SRBs.

See z/OS MVS Programming: Authorized Assembler Services Guide for more
information on how to use the STATUS macro SET and RESET options and z/OS
MVS Programming: Assembler Services Guide for more information on how to use
the STATUS macro START and STOP options.

Environment
The requirements for the caller issuing STATUS with the START or STOP
parameters are:

Minimum authorization : Problem state or supervisor state, with any PSW key. For
SRB and ASID parameters, supervisor state and PSW key 0.

Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 31-bit
ASC mode : Primary or access register (AR)
Interrupt status : Enabled or disabled for I/O and external interrupts
Locks : No locks held
Control parameters : No requirements

The requirements for the caller issuing STATUS with the SET or RESET parameters
are:

Minimum authorization : Supervisor state, with PSW key 0.
Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 31-bit

© Copyright IBM Corp. 1988, 2002 103

ASC mode : Primary or access register (AR)
Interrupt status : Enabled or disabled for I/O and external interrupts
Locks : No locks held
Control parameters : No requirements

Programming Requirements
None.

Restrictions
Except for the TCB, all input parameters to this macro can reside in storage above
16 megabytes.

While in process-must-complete mode, a task cannot:
v Issue STATUS STOP,SRB or STATUS START,SRB
v Request the LOCAL lock unconditionally
v Issue an SVC or invoke services that issue SVCs
v Issue the WAIT macro or invoke services that issue WAITs

These restrictions also apply to any routine invoked by a program in
process-must-complete mode.

Process-must-complete mode is not preserved across a retry from an ESTAE-type
routine. However, it is preserved across a retry from an FRR.

The caller cannot have an EUT FRR established.

Register Information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Performance Implications
Using STATUS will degrade performance of the calling program’s address space
while STATUS runs.

STATUS Macro

104 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Remaining in process-must-complete mode for an extended period of time will
degrade the performance of other programs waiting to use global resources that the
program in this mode holds.

START/STOP Options

Syntax
The START/STOP options of the STATUS macro are written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede STATUS.

STATUS

� One or more blanks must follow STATUS.

START
STOP

,TCB=tcb addr tcb addr: RX-type address or address in register (2) - (12), or 0.
,SRB ASID addr: RX-type address or address in register (2) - (12).
,SRB, ASID=ASID addr Note : ASID may only be specified with START.

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are described as follows:

START
STOP

Specifies that the task identified in the TCB parameter is to be stopped (STOP)
or started (START). If you omit the TCB parameter, all subtasks of the
originating task are stopped or started.

Note: The STOP parameter does not ensure that the subtask is stopped when
control returns to the issuer. A subtask can have a “stop deferred”
condition that would cause that particular subtask to remain dispatchable
until stops are no longer deferred. In an MP environment, it would be
possible to have a task issue the STATUS macro with the STOP
parameter and resume processing while the subtask (for which the
STOP was issued) is redispatched to another processor.

,TCB=tcb addr
,SRB
,SRB,ASID=ASID addr

Specifies the status of the stop/start function:

STATUS Macro

STATUS — Stop, Start, or Put a Subtask in Process Must-Complete Mode 105

TCB Specifies the address of a fullword on a fullword boundary containing
the address of the TCB that is to have its START/STOP count adjusted.

Note: The TCB resides in storage below 16 megabytes.

SRB Specifies that the STOP and START functions affect the dispatchability
of system-level SRBs; all tasks in the address space except the caller’s
are also set or reset nondispatchable. For START, the ASID addr
specifies the address of a halfword containing the address space
identifier. If ASID is not specified, the action is taken against the caller’s
address space.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and may be any valid
coding values.

Return Codes
When control returns to the caller, register 15 contains one of the following
hexadecimal return codes:

Table 16. Return Codes for the STATUS Macro

Return Code Meaning and Action

00 Meaning : Processing completed successfully.

Action : None required.

04 Meaning : Program error. START/STOP request failed. The task you
specified is not a subtask of the calling program’s task.

Action : Ensure that the task you specify on the TCB parameter is a subtask
of the calling program.

SET/RESET Option

Syntax
The SET/RESET option of the STATUS macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede STATUS.

STATUS

� One or more blanks must follow STATUS.

SET,MC,PROCESS
RESET,MC,PROCESS

STATUS Macro

106 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Parameters
The parameters are explained as follows:

SET,MC,PROCESS
RESET,MC,PROCESS

SET,MC,PROCESS places the program that invokes the macro in
process-must-complete mode.

RESET,MC,PROCESS ends process-must-complete mode.

Return Codes
When control returns to the caller, register 15 contains one of the following
hexadecimal return codes:

Table 17. Return Codes for the SET/RESET Option

Return Code Meaning and Action

00 Meaning : Processing completed successfully.

Action : None required.

04 Meaning : Program error. You issued STATUS SET,MC,PROCESS but it had
already been issued.

Action : Do not issue STATUS SET,MC,PROCESS again until you have
issued STATUS RESET,MC,PROCESS.

08 Meaning : Program error. You issued STATUS RESET,MC,PROCESS but
had never issued STATUS SET,MC,PROCESS.

Action : Issue STATUS SET,MC,PROCESS before issuing STATUS
RESET,MC,PROCESS.

Example
Cause a program process to enter, then end, process-must-complete mode.
* Chaining for a nonreenterable program, but note that STATUS SET,MC,
* PROCESS and STATUS RESET,MC,PROCESS do not require that a savearea
* be provided.

SETPMC CSECT
SETPMC AMODE 31
SETPMC RMODE ANY

STM 14,12,12(13) SAVE REGISTERS
LR 12,15 GET ENTRY POINT ADDRESS
USING SETPMC,12 ESTABLISH ADDRESSABILITY
ST 13,SAVEAREA+4 SAVE REGISTER 13
LR 2,13 GET CALLER SAVEAREA ADDRESS
LA 13,SAVEAREA SET UP OUR SAVEAREA ADDRESS
ST 13,8(2) SAVE SAVEAREA ADDRESS IN CALLER

SAVEAREA
MODESET MODE=SUP,KEY=ZERO GET INTO SUPERVISOR STATE, KEY 0
STATUS SET,MC,PROCESS SET PMC MODE
LTR 15,15 CHECK RETURN CODE
BNZ BADSET NOT SUCCESSFUL, GO HANDLE...

*
* Perform processing that requires process-must-complete mode...
* Note: This processing must not request the local lock and
* must not issue any SVCs or issue a WAIT.
*
*
RESET STATUS RESET,MC,PROCESS RESET PMC MODE

LTR 15,15 PMC MODE HAD ALREADY BEEN RESET,

STATUS Macro

STATUS — Stop, Start, or Put a Subtask in Process Must-Complete Mode 107

ALREADY OUT OF PMC MODE
BNZ BADRESET NOT SUCCESSFUL, GO HANDLE...

*
EXIT DS 0H

MODESET MODE=PROB,KEY=NZERO GET OUT OF SUPERVISOR STATE, KEY 0
L 13,4(13) RESTORE REGISTER 13
L 14,12(13) RESTORE REGISTER 14
LM 0,12,20(13) RESTORE REGISTERS 0 THRU 12
SLR 15,15 SET RETURN CODE 0 IN REGISTER 15
BR 14 RETURN TO THE CALLER

BADSET DS 0H
*
* Perform appropriate processing for nonzero return code from
* STATUS SET,MC,PROCESS.
*

B EXIT
BADRESET DS 0H
*
* Perform appropriate processing for nonzero return code from
* STATUS RESET,MC,PROCESS.
*

B EXIT
SAVEAREA DC 18F’0’ 18-WORD SAVEAREA

END SETPMC

STATUS Macro

108 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

STORAGE — Obtain and Release Storage

Description
The STORAGE macro requests that the system obtain or release an area of virtual
storage in the primary address space (by default), or in the address space defined
through the ALET parameter. The two functions of the macro are:
v STORAGE OBTAIN, which requests one or more areas of virtual storage
v STORAGE RELEASE, which releases one or more areas of virtual storage.

The STORAGE macro is also described in z/OS MVS Programming: Assembler
Services Reference ABE-HSP, with the exception of the ALET, TCBADDR, and
OWNER parameters.

If you use STORAGE OBTAIN to request real storage backing above 2 gigabytes,
but your system does not support 64-bit storage, your request will be treated as a
request for backing above 16 megabytes, even on earlier releases of OS/390 that
do not support backing above 2 gigabytes. However, boundary requirements
indicated by the CONTBDY and STARTBDY parameters will be ignored by earlier
releases of OS/390.

Environment
The requirements for the caller are:

Minimum authorization : For subpools 0-127: problem state and PSW key 8-15.

For subpools 131 and 132, one or more of the following :
v Supervisor state
v PSW key 0-7
v PSW key mask (PKM) that allows the calling program to

switch its PSW key to match the key of the storage to be
obtained or released.

For the ALET parameter, the TCBADDR parameter, and all
other subpools, either of the following :
v Supervisor state
v PSW key 0-7

To issue a subpool release for subpool 0: PSW key 0.
Dispatchable unit mode : Task or SRB
Cross memory mode : Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit
ASC mode : Primary or AR
Interrupt status : Enabled for I/O and external interrupts.

Enabled or disabled for I/O and external interrupts only if
obtaining or releasing common storage.

Locks : v No requirement.
v You may hold the local lock for the target address space.
v If you hold the local lock, you may also hold the CMS

lock.
v You may hold the CPU lock when obtaining or releasing

common storage.
Control parameters : No requirement.

© Copyright IBM Corp. 1988, 2002 109

Programming Requirements
None.

Restrictions
None.

Register Information
Register usage varies depending on the type of STORAGE request. For specific
information, see the descriptions of STORAGE OBTAIN and STORAGE RELEASE.

Performance Implications
None.

STORAGE OBTAIN
The STORAGE macro with the OBTAIN parameter requests that the system
allocate an area of virtual storage to the specified task. The length you specify must
not exceed the length available. The length available depends on how much
storage has already been allocated and, for subpools 0 - 127, 129-132, 240, and
250-252, the region size. For some subpools, the system releases the storage
when the owning task terminates. For other subpools, you must issue STORAGE
RELEASE or FREEMAIN to release them. Before obtaining storage, be sure to read
“Selecting the Right Subpool for Your Virtual Storage Request” in z/OS MVS
Programming: Authorized Assembler Services Guide.

Note: When you obtain storage, the system clears the requested storage to zeros
if you obtain either:
v 8192 bytes or more from a pageable, private storage subpool.
v 4096 bytes or more from a pageable, private storage subpool, with

BNDRY=PAGE specified.

The caller can specify CHECKZERO=YES to detect these and other
cases where the system clears the requested storage to zeros.

Input Register Information
Before issuing the STORAGE macro with the OBTAIN parameter, the caller does
not have to place any information into any register unless using it in register
notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 For a successful request in which maximum and minimum lengths

were specified, contains the length of the storage obtained.

Otherwise, used as a work register by the system.
1 The address of the allocated storage when STORAGE OBTAIN is

successful; otherwise, used as a work register by the system.

Note: In an AMODE 64 routine, a successful STORAGE OBTAIN
will return a 64-bit pointer to the obtained area (bits 0-32 will
be zero).

2-13 Unchanged
14 Used as a work register by the system.

STORAGE Macro

110 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0 Used as a work register by the system.
1 The ALET value if you specified the ALET parameter and the

STORAGE OBTAIN is successful.

0 if you did not specify the ALET parameter and the STORAGE
OBTAIN is successful

otherwise, used as a work register by the system..
2-13 Unchanged
14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the service returns control.

Syntax
The OBTAIN option of the STORAGE macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede STORAGE.

STORAGE

� One or more blanks must follow STORAGE.

OBTAIN

,LENGTH=length value length value: Symbol, decimal number, or register (0), (2)-(12).
,LENGTH=(max length,min length) max length: Symbol, decimal number, or register (0), (2) - (12).

min length: Symbol, decimal number, or register (1) - (12).

,ADDR=stor addr stor addr: RX-type address or register (1) - (12).
Default : ADDR=(1).

,INADDR=stor addr stor addr: RX-type address or register (1) - (12).
Note : This parameter can only be specified with LOC=EXPLICIT.

,SP=subpool number subpool number: Symbol, decimal number, or register (2)-(12), (15).
Default : SP=0.

,ALET=alet-value alet-value: Decimal number, RX-type address, or access register(1)-(12)
Default : ALET=0.

,BNDRY=DBLWD Default : BNDRY=DBLWD

STORAGE Macro

STORAGE — Obtain and Release Storage 111

,BNDRY=PAGE

,CONTBDY=containing_bdy containing_bdy: Decimal number 3-31 or register (2) - (12).
,STARTBDY=starting_bdy starting_bdy: Decimal number 3-31 or register (2) - (12).

,KEY=key number key number: Decimal number 0-15 or register (2) - (12).
Note 1 : KEY is valid only when SP is specified.
Note 2 : You cannot specify both KEY and CALLRKY=YES.

,CALLRKY=NO Default : CALLRKY=NO
,CALLRKY=YES Note : You cannot specify both CALLRKY=YES and KEY.

,LOC=24
,LOC=(24,31)
,LOC=(24,64)
,LOC=31
,LOC=(31,31)
,LOC=(31,64)
,LOC=RES Default : LOC=RES
,LOC=(RES,31)
,LOC=(RES,64)
,LOC=EXPLICIT Note : You must specify the INADDR parameter with
,LOC=(EXPLICIT,24) EXPLICIT.
,LOC=(EXPLICIT,31)
,LOC=(EXPLICIT,64)

,OWNER=HOME Default : OWNER=HOME
,OWNER=PRIMARY
,OWNER=SECONDARY
,OWNER=SYSTEM

,RTCD=rtcd addr rtcd addr: RX-type address or register (2) - (12) or (15).
Default : RTCD=(15).

,COND=YES Default : COND=NO
,COND=NO

,CHECKZERO=YES Default : CHECKZERO=NO
,CHECKZERO=NO

,TCBADDR=tcbaddress tcbaddress: RS-type address or register (2) - (12).
Default : See “Selecting the Right Subpool for Your Virtual Storage Request”
in z/OS MVS Programming: Authorized Assembler Services Guide for the
possible default values.

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained as follows:

OBTAIN
Requests that the system obtain virtual storage.

STORAGE Macro

112 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,LENGTH=length value
,LENGTH=(max length,min length)

Specifies the amount of storage the system is to obtain. length value specifies
the length, in bytes, of the requested virtual storage. max length and min length
specify the maximum and minimum amounts of storage. These numbers should
be a multiple of 8; if they are not, the system uses the next higher multiple of 8.

,ADDR=stor addr
Specifies the location where the system is to return the address of the storage it
allocates.

,INADDR=stor addr
Specifies the desired virtual address for the storage to be obtained. When you
specify INADDR, you must specify EXPLICIT on the LOC parameter.

Notes:

1. The address specified on INADDR must be on a doubleword boundary.

2. Make sure that the virtual storage address specified on INADDR and the
central storage backing specified on the LOC=EXPLICIT parameter are a
valid combination. For example, if the address specified on INADDR is for
storage above 16 megabytes, specify LOC=EXPLICIT or
LOC=(EXPLICIT,ANY). Valid combinations include:
v virtual above, central any
v virtual any, central any
v virtual below, central below
v virtual below, central any

,SP=subpool number
Specifies the subpool number for the storage. (See z/OS MVS Programming:
Authorized Assembler Services Guide for a list of valid subpools.) If you specify
a register, the subpool number must be in bits 24-31 of the register, with bits
0-23 set to zero. If you omit this parameter, the system uses the default, which
is subpool 0.

Notes:

1. Callers executing in supervisor state and key 0, who specify subpool 0, will
obtain storage from subpool 252. Therefore, when requesting a dump of this
storage through the SDUMP or SDUMPX macro, they must specify subpool
252 rather than zero.

2. Storage requested from subpools 240 and 250 are translated to subpool 0
requests.

,ALET=alet-value
Specifies the ALET of the target address space — the address space in which
the storage is to be obtained. The ALET must be on the caller’s primary
address space access list (PASN-AL) or dispatchable unit access list (DU-AL)
and, if the ALET identifies a private entry, the caller must be authorized to the
target address space through the extended authorization index (EAX). For more
information, see z/OS MVS Programming: Extended Addressability Guide. If
you omit this parameter, the system assumes the target address space is in the
primary address space.

,BNDRY=DBLWD
,BNDRY=PAGE

Specifies that alignment on a doubleword boundary (DBLWD) or alignment with
the start of a virtual page on a 4K boundary (PAGE) is required for the start of a
requested area.

STORAGE Macro

STORAGE — Obtain and Release Storage 113

If the request specifies one of the LSQA or SQA subpools, the system ignores
the BNDRY=PAGE keyword. Requests for storage from these subpools are
then fulfilled from a single page, unless the request is greater than a page. See
z/OS MVS Programming: Authorized Assembler Services Guide for a list of the
LSQA and SQA subpools.

The default is BNDRY=DBLWD.

,CONTBDY=containing_bdy
Specifies the boundary the obtained storage must be contained within. Specify
a power of 2 that represents the containing boundary. Supported values are
3-31. For example, CONTBDY=10 means the containing boundary is 2**10, or
1024 bytes. The containing boundary must be at least as large as the maximum
requested boundary. The obtained storage will not cross an address that is a
multiple of the requested boundary.

If a register is specified, the value must be in bits 24-31 of the register. Do not
specify CONTBDY on a variable-length request.

CONTBDY is not valid with LOC=EXPLICIT or BNDRY=PAGE.

CONTBDY applies to all subpools.

If you omit this parameter, there is no containing boundary.

,STARTBDY=starting_bdy
Specifies the boundary the obtained storage must start on. Specify a power of 2
that represents the start boundary. Supported values are 3-31. For example,
STARTBDY=10 means the start boundary is 2**10, or 1024 bytes. The obtained
storage will begin on an address that is a multiple of the requested boundary.

If a register is specified, the value must be in bits 24-31 of the register. Do not
specify STARTBDY on a variable-length request.

STARTBDY is not valid with LOC=EXPLICIT or BNDRY=PAGE.

STARTBDY applies to all subpools.

If you omit this parameter, the start boundary is 8 bytes (equivalent to
specifying STARTBDY=3).

,KEY=key-number
Indicates the storage key of the storage to be obtained. The valid storage keys
are 0-15. If you pass the storage key in a register, it must be in bits 24-27 in
that register. KEY is valid only when SP is specified, and applies only to
subpools 129-132, 227-231, 241, and 249. The system ignores the KEY
parameter if KEY is used for any other subpools. For detailed information about
how the system determines what storage key to assign to your storage request,
see “Selecting the Right Subpool for Your Virtual Storage Request” in the z/OS
MVS Programming: Authorized Assembler Services Guide.

,CALLRKY=NO
,CALLRKY=YES

Specifies how the system assigns the key for the storage to be obtained:

CALLRKY=NO
The system assigns the value according to the specified
subpool:

v For subpools 129-132, 227-231, 241, and 249, the system
assigns the value specified on the KEY parameter (or zero, if
the KEY parameter is omitted) as the storage key

STORAGE Macro

114 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

v For all other subpools, the system ignores the CALLRKY
parameter.

CALLRKY=YES
The system assigns the caller’s current PSW key as the
storage key. When you specify CALLRKY=YES, do not also
specify KEY. Specify CALLRKY only when obtaining storage
from subpools 129-132, 227-231, 241, and 249. For all other
subpools, the system ignores the CALLRKY parameter.

The default is CALLRKY=NO. For detailed information about how the system
determines what storage key to assign to your storage request, see “Selecting
the Right Subpool for Your Virtual Storage Request” in the z/OS MVS
Programming: Authorized Assembler Services Guide.

,LOC=24
,LOC=(24,31)
,LOC=(24,64)
,LOC=31
,LOC=(31,31)
,LOC=(31,64)
,LOC=RES
,LOC=(RES,31)
,LOC=(RES,64)
,LOC=EXPLICIT
,LOC=(EXPLICIT,24)
,LOC=(EXPLICIT,31)
,LOC=(EXPLICIT,64)

Specifies the location of virtual storage and central (also called real) storage.
This is especially helpful for callers with 24-bit dependencies. When LOC is
specified, central storage is allocated anywhere until the storage is fixed (for
example, using the PGSER macro). You can specify the location of central
storage (after the storage is fixed) and virtual storage (whether or not the
storage is fixed) using the following LOC parameter values:

LOC=24 indicates that central and virtual storage are to be located below 16
megabytes. LOC=24 must not be used to allocate disabled reference (DREF)
storage.

Note: Specifying LOC=BELOW is the same as specifying LOC=24.
LOC=BELOW is still supported, but IBM recommends using LOC=24
instead.

LOC=(24,31) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere below 2 gigabytes.

Note: Specifying LOC=(BELOW,ANY) is the same as specifying LOC=(24,31).
LOC=(BELOW,ANY) is still supported, but IBM recommends using
LOC=(24,31) instead.

LOC=(24,64) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere in 64-bit storage.

LOC=31 and LOC=(31,31) indicate that virtual and central storage can be
located anywhere below 2 gigabytes.

STORAGE Macro

STORAGE — Obtain and Release Storage 115

Note: Specifying LOC=ANY or LOC=(ANY,ANY) is the same as specifying LOC
=31 or LOC=(31,31). LOC=ANY and LOC=(ANY,ANY) are still supported,
but IBM recommends using LOC=31 or LOC=(31,31) instead.

LOC=(31,64) indicates that virtual storage is to be located below 2 gigabytes
and central storage can be located anywhere in 64-bit storage.

When you use LOC=RES to allocate storage that can reside either above or
below 16 megabytes, LOC=RES indicates that the location of virtual and central
storage depends on the location of the caller. If the caller resides below 16
megabytes, virtual and central storage are to be located below 16 megabytes. If
the caller resides above 16 megabytes, virtual and central storage are to be
located either above or below 16 megabytes.

LOC=(RES,31) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere below 2 gigabytes. In either case,
central storage can be located anywhere below 2 gigabytes.

Note: Specifying LOC=(RES,ANY) is the same as specifying LOC=(RES,31).
LOC=(RES,ANY) is still supported, but IBM recommends using
LOC=(RES,31) instead.

LOC=(RES,64) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere in 31-bit storage. In either case, central
storage can be located anywhere in 64-bit storage.

Note: If your program resides below 16 megabytes but runs with 31-bit
addressing mode, you can specify LOC=RES (as a default or explicitly)
or LOC=(RES,31) to obtain storage from a subpool supported only
above 16 megabytes. Do not specify subpools supported only above 16
megabytes on requests using LOC=RES or LOC=(RES,31) if your
program resides below 16 megabytes and runs with 24-bit addressing.

LOC=EXPLICIT, LOC=(EXPLICIT,24), LOC=(EXPLICIT,31), or
LOC=(EXPLICIT,64) specify that the requested virtual storage is to be located
at the address specified with the INADDR parameter, which is required with
EXPLICIT. EXPLICIT is valid only for subpools 0-127, 129-132, 240, 244, 250,
251, and 252. You cannot specify the BNDRY, OWNER, or LENGTH=(max
length,min length) parameters with EXPLICIT.

Note: Specifying LOC=(EXPLICIT,BELOW) is the same as specifying
LOC=(EXPLICIT,24). Specifying LOC=(EXPLICIT,ANY is the same as
specifying LOC=(EXPLICIT,31). The older specifications are still
supported, but IBM recommends using the newer specifications instead.

LOC=(EXPLICIT,31) indicates that virtual storage is to be located at the address
specified on the INADDR parameter, and central storage can be located
anywhere below 2 gigabytes.

STORAGE Macro

116 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

|
|
|
|
|
|

|
|
|
|

LOC=(EXPLICIT,24) indicates that virtual storage is to be located at the address
specified on the INADDR parameter, and central storage is to be located below
16 megabytes. The virtual storage address specified on the INADDR parameter
must be below 16 megabytes.

LOC=EXPLICIT and LOC=(EXPLICIT,64) indicate that virtual storage is to be
located at the address specified on the INADDR parameter, and central storage
can be located anywhere in 64-bit storage.

When you specify EXPLICIT on a request for storage from the same virtual
page as previously requested storage, you must request it in the same key,
subpool, and central storage area as on the previous storage request. For
example, if you request virtual storage backed with central storage below 16
megabytes, any subsequent requests for storage from that virtual page must be
specified as LOC=(EXPLICIT,24).

Notes:

1. A caller cannot specify LOC=24 or LOC=(24,31) from subpools: 203-205,
213-215, 223-225, 247, and 248 because they are supported only above 16
megabytes.

2. When you specify LOC=31, the actual location of the virtual storage (that is,
whether it is above or below 16Mb) depends on the subpool you specify on
the SP parameter:

v Some subpools (for example, subpool 226) are supported only below 16
megabytes. For these subpools, STORAGE OBTAIN locates virtual
storage below 16 megabytes, regardless of how you specify LOC.

v Some subpools (for example, 203-204) are supported only above 16
megabytes. For these subpools, STORAGE OBTAIN locates virtual
storage above 16 megabytes. If you specify LOC=24 for one of these
subpools, the system abends your program.

v All other subpools are supported both above and below 16Mb. For these
subpools, specifying LOC=31 causes STORAGE OBTAIN to try to
allocate virtual storage above 16Mb, but below 2Gb. If the attempt fails, it
tries to allocate virtual storage below 16Mb. If this attempt also fails, it
does not allocate any storage.

3. A caller residing below 16 megabytes but running in 31-bit addressing mode
can specify LOC=RES (as a default or explicitly) or LOC=(RES,31) to obtain
storage from a subpool supported only above 16 megabytes.

,OWNER=HOME
,OWNER=PRIMARY
,OWNER=SECONDARY
,OWNER=SYSTEM

Specifies the entity to which the system will assign ownership of requested
CSA, ECSA, SQA, and ESQA storage. The system uses this ownership
information to track the use of CSA, ECSA, SQA and ESQA storage. This
parameter can have one of the following values:

HOME The home address space

PRIMARY The primary address space

SECONDARY
The secondary address space

SYSTEM The system (the storage is not associated with an address

STORAGE Macro

STORAGE — Obtain and Release Storage 117

space); specify this value if you expect the requested storage to
remain allocated after termination of the job that obtained the
storage.

The default value is OWNER=HOME. The system ignores the OWNER keyword
unless you specify a CSA, ECSA, SQA, or ESQA subpool on the SP parameter.

Storage tracking is available as of MVS/SP release 4.3. However, programs that
issue the STORAGE OBTAIN macro with the OWNER parameter can run on
any MVS system from MVS/SP 3.1 to the current release.

,RTCD=rtcd addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15. This parameter is valid only if you specify COND=YES.

,COND=YES
,COND=NO

Specifies whether the request is unconditional or conditional.

COND=YES specifies that the active unit of work should not be abnormally
terminated if there is insufficient contiguous virtual storage to satisfy the
request, and instead should return to the caller with a non-zero return code.
Use of COND=YES does not prevent all abnormal terminations. For example, if
the request has incorrect or inconsistent parameters, the system abnormally
terminates the active unit of work. If you specify COND=YES, you may also
specify the RTCD parameter to define the location where the system is to store
the return code.

COND=NO indicates that the request is unconditional. The system abnormally
terminates the active unit of work if the STORAGE OBTAIN request cannot
complete successfully. This situation occurs if the parameters passed on the
request are incorrect or inconsistent, if the system encounters internal errors, or
if there is not enough contiguous virtual storage to satisfy the request.
COND=NO is the default.

,CHECKZERO=YES
,CHECKZERO=NO

Specifies whether or not the return code for a successful completion should
indicate if the system has cleared the requested storage to zeroes. When
CHECKZERO=NO is specified or defaulted, the return code for a successful
completion is 0. When CHECKZERO=YES is specified, the return code for a
successful completion is X’14’ if the system has cleared the requested storage
to zeroes, and 0 if the system has no cleared the requested storage to zeroes.

There is no performance cost to specifying CHECKZERO=YES.

CHECKZERO processing is available as of OS/390 R6. Programs that issue the
STORAGE macro with the CHECKZERO parameter can run on any MVS
system from MVS/SP 2.1 to the current release. On a down-level system,
CHECKZERO will be ignored, and the return code for a successful completion
(conditional or unconditional) will be 0.

,TCBADDR= tcbaddress
Specifies the address of a word that contains the address of the input task
control block (TCB), or a register that contains the address of the input TCB.
The system assumes that the input TCB resides in the address space where
the storage is to be obtained.

STORAGE Macro

118 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

For an explanation of the term input TCB , and to determine the
system-assigned defaults for private storage ownership, see “Selecting the
Right Subpool for Your Virtual Storage Request” in z/OS MVS Programming:
Authorized Assembler Services Guide.

The system ignores the TCBADDR keyword if the STORAGE OBTAIN request
is for a common storage subpool.

,RELATED=value
Specifies information used to self-document macro by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and can be any valid
coding values.

ABEND Codes
Abend codes that STORAGE OBTAIN might issue are listed below. For detailed
abend code information, see z/OS MVS System Codes.

178 278 378 478 778

878 978 A78 B78 D78

Return and Reason Codes
When control returns from the STORAGE OBTAIN request and you specified a
conditional request, GPR 15 (and rtcd addr, if you coded RTCD) contains one of
the following hexadecimal return codes:

Table 18. Return Codes for STORAGE OBTAIN

Return Code Meaning and Action

0 Meaning : Successful completion. CHECKZERO=YES was not specified, or
the system has not cleared the requested storage to zeroes.

Action : None.

4 If you did not specify EXPLICIT on the LOC parameter :

Meaning : Environmental or system error. Virtual storage was not
obtained because insufficient storage is available.

Action : If the request was for private (local) storage, consult the system
programmer to see if you have exceeded an installation-determined
private storage limit.

If the request is for common (global) storage, your system is probably
experiencing a common storage shortage and your request cannot be
satisfied until the shortage is corrected.

If you specified EXPLICIT on the LOC parameter :

Meaning : Program error. Virtual storage was not obtained because part
of the requested storage area is outside the bounds of the user region.

Action : Determine why your program is mistakenly requesting storage
outside the user region. If your region size is too small, consult the
system programmer about increasing the region size.

8 Meaning : System error. Virtual storage was not obtained because the
system has insufficient central storage to back the request.

Action : Report the problem to the system programmer so the cause of the
problem can be determined and corrected.

STORAGE Macro

STORAGE — Obtain and Release Storage 119

Table 18. Return Codes for STORAGE OBTAIN (continued)

Return Code Meaning and Action

0C Meaning : System error. Virtual storage was not obtained because the
system cannot page in the page table associated with the storage to be
allocated.

Action : Report the problem to the system programmer so the cause of the
problem can be determined and corrected.

10 Meaning : Program error. Virtual storage was not obtained due to one of the
reasons listed below. This return code applies only to STORAGE requests
with LOC=EXPLICIT specified.

v Part of the requested area is allocated already.

v Virtual storage was already allocated in the same page as this request,
but one of the following characteristics of the storage was different:
– The subpool
– The key
– Central storage backing

Action : Determine why your program is attempting to obtain allocated
storage or why your program is attempting to obtain virtual storage with
different attributes from the same page of storage. Correct the coding error.

14 Meaning : Successful completion. The system has cleared the requested
storage to zeroes.

This return code occurs only when CHECKZERO=YES is specified.

Action : None.

Examples
For examples of how to use the STORAGE macro with the OBTAIN option, see
“Examples of the OBTAIN and RELEASE Options” on page 125.

STORAGE RELEASE
The STORAGE macro with the RELEASE parameter requests that the system
release an area of virtual storage or an entire virtual storage subpool, previously
allocated through the STORAGE or GETMAIN macro. The system abends the
active task if the specified virtual storage does not start on a doubleword boundary
or, for an unconditional request, if the specified area or subpool is not allocated to
the current task. The current task is determined from the input task specified on the
TCBADDR parameter (see “Selecting the Right Subpool for Your Virtual Storage
Request” in z/OS MVS Programming: Authorized Assembler Services Guide for
more information about the input task).

Input Register Information
Before issuing the STORAGE macro with the RELEASE parameter, the caller does
not have to place any information into any register unless using it in register
notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system

STORAGE Macro

120 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

15 Return code if you specified COND=YES; otherwise, used as a
work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the service returns control.

Syntax
The RELEASE option of the STORAGE macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede STORAGE.

STORAGE

� One or more blanks must follow STORAGE.

RELEASE

,LENGTH=length value length value: Symbol, decimal number, or register (0), (2) - (12).
,ADDR=stor addr stor addr: RX-type address or register (1) - (12).
,LENGTH=length value
,SP=subpool number subpool number: Symbol, decimal number, or register (2) - (12), (15).

Default : SP=0.

,ALET=alet-value alet-value: Decimal number, RX-type address, access register (1) - (12).
Default : ALET=0.

,KEY=key number key number: Decimal number 0-15 or register (2) - (12).
Note : KEY is valid only when SP is specified.

,CALLRKY=NO Default : CALLRKY=NO
,CALLRKY=YES Note : You cannot specify both CALLRKY=YES and KEY.

,RTCD=rtcd addr rtcd addr: RX-type address or registers (2) - (12), (15).
Default : RTCD=(15)

,COND=YES Default : COND=NO
,COND=NO

,TCBADDR=tcbaddress tcbaddress: RS-type address or register (2) - (12).

STORAGE Macro

STORAGE — Obtain and Release Storage 121

Default : See “Selecting the Right Subpool for Your Virtual Storage Request”
in z/OS MVS Programming: Authorized Assembler Services Guide for the
possible default values.

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained as follows:

RELEASE
Requests that the system release virtual storage.

,LENGTH=length value
Specifies the number of bytes of storage that the system is to release. If you
specify LENGTH, you must also specify ADDR. To free an entire subpool, use
SP instead of LENGTH and ADDR. Do not specify a length value of zero with
an address of zero. This will cause STORAGE RELEASE to free the subpool
specified with the SP parameter, or subpool 0, if the SP parameter is omitted.

,ADDR=stor addr
Specifies the address of the storage to be released. If you specify ADDR, you
must also specify LENGTH. To free an entire subpool, use SP instead of
LENGTH and ADDR.

,SP=subpool number
Specifies the subpool number for the storage to be released. The subpool
number must be a valid subpool number between 0 and 255. If you specify the
subpool in a register, the subpool number must be in bits 24-31 of the register,
with bits 0-23 set to zero. If you omit this parameter, the system uses subpool
0.

A request to release all the storage in a subpool is known as a subpool
release . To issue a subpool release, use SP to indicate the subpool and do not
specify either LENGTH or ADDR. Issue subpool releases only for the following
subpools: 0-127, 129-132, 203, 204, 213, 214, 223, 224, 229, 230, 233, 236,
237, 240, 249, and 250-253. If you try to issue a subpool release for any other
subpool, an abend X'478' or X'40A' occurs. See the list of subpool
characteristics in z/OS MVS Programming: Authorized Assembler Services
Guide for information and requirements pertaining to specific subpools.

Notes:

1. The system translates subpool 0 storage requests to subpool 252 storage
requests when you are running in supervisor state and key 0. If you are not
running in supervisor state and key 0, you will receive storage from subpool
0 when you request it.

2. The system translates subpool 240 and 250 storage requests to subpool 0
storage requests. Bearing this in mind, you must be careful to specify the
correct subpool when obtaining and releasing storage. For instance, if you
obtain subpool 0 storage while running in problem state, you will receive
subpool 0 storage. If you attempt to release it after switching to supervisor
state and PSW key 0, you cannot specify subpool 0 because the system will
try to free subpool 252 storage. Instead, you must release the storage
specifying subpools 240 or 250, which are translated by the system to
subpool 0.

STORAGE Macro

122 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,ALET=alet-value
Specifies the ALET of the address space in which the storage is to be released.
The ALET must be on the caller’s primary address space access list (PASN-AL)
or dispatchable unit access list (DU-AL) and, if the ALET identifies a private
entry, the caller must be authorized to the target address space through the
extended authorization index (EAX). For additional information, see z/OS MVS
Programming: Extended Addressability Guide. If you omit this parameter, the
system assumes storage is in the primary address space.

,KEY=key-number
Indicates the storage key of the storage to be released. The valid storage keys
are 0-15. If you pass the storage key in a register, it must be in bits 24-27 in
that register. KEY is valid only with SP and applies only to subpools 129-132,
227-231, 241, and 249. The system ignores the KEY parameter if KEY is used
for any other subpools. KEY allows you to release storage in the specified
storage protection key. See list of subpool characteristics in z/OS MVS
Programming: Authorized Assembler Services Guide for information on
authorization requirements pertaining to specific subpools.

,CALLRKEY=NO
,CALLRKEY=YES

Specifies how the system assigns the key for the storage to be obtained:

CALLRKY=NO
The system assigns the value according to the specified
subpool:

v For subpools 129-132, 227-231, 241, and 249, the system
assigns the value specified on the KEY parameter (or zero, if
the KEY parameter is omitted) as the storage key

v For all other subpools, the system ignores the CALLRKY
parameter.

CALLRKY=YES
The system assigns the caller’s current PSW key as the
storage key. When you specify CALLRKY=YES, do not also
specify KEY. Specify CALLRKY only when obtaining storage
from subpools 129-132, 227-231, 241, and 249. For all other
subpools, the system ignores the CALLRKY parameter.

The default is CALLRKY=NO. For detailed information about how the system
determines what storage key to assign to your storage request, see “Selecting
the Right Subpool for Your Virtual Storage Request” in the z/OS MVS
Programming: Authorized Assembler Services Guide.

,RTCD=rtcd addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15. This parameter is only valid if you specify COND=YES.

,COND=YES
,COND=NO

Specifies whether the request is unconditional or conditional.

COND=YES specifies that the task should not abend if the system cannot
release the storage. However, the system cannot prevent some abends. The
RTCD parameter specifies the location where the system is to store a return
code. COND=NO specifies that the system abend the active task if it cannot
release the storage.

COND=NO is the default.

STORAGE Macro

STORAGE — Obtain and Release Storage 123

,TCBADDR= tcbaddress
Specifies the address of a word that contains the address of the input task
control block (TCB), or a register that contains the address of a word that
contains the address of the input TCB.

For an explanation of the term input TCB , and to determine the
system-assigned defaults for private storage ownership, see “Selecting the
Right Subpool for Your Virtual Storage Request” in z/OS MVS Programming:
Authorized Assembler Services Guide.

The system ignores the TCBADDR keyword if the STORAGE RELEASE
request is for a common storage subpool. If you specified TCBADDR on
STORAGE OBTAIN, you should also specify TCBADDR on STORAGE
RELEASE.

,RELATED=value
Specifies information used to self-document macro by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and can be any valid
coding values.

ABEND Codes
Abend codes that STORAGE RELEASE might issue are listed below. For detailed
abend code information, see z/OS MVS System Codes.

178 278 378 478 778

878 978 A78 B78 D78

Return and Reason Codes
When the STORAGE macro returns control to your program and you specified a
conditional request, GPR 15 (and rtcd addr, if you coded RTCD) contains one of
the following hexadecimal return codes:

Table 19. Return Codes for STORAGE RELEASE

Return Code Meaning and Action

0 Meaning : Successful completion.

Action : None.

4 Meaning : Program error. Not all requested virtual storage was freed.

Action : Check your program for the following kinds of errors:

v The address of the storage area to be freed is not correct.

v The subpool you have specified does not match the subpool of the
storage to be freed.

v The key you have specified does not match the key of the storage to be
freed.

v For private storage: the owning task identified by the input TCB is not
correct for the storage to be freed.

8 Meaning : Program error. No virtual storage was freed because part of the
storage area to be freed is fixed.

Action : Check your program for the following kinds of errors:
v You passed an incorrect storage area address to the STORAGE macro.
v You attempted to free storage that is fixed.

STORAGE Macro

124 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Examples of the OBTAIN and RELEASE Options

Example 1
Code the instructions to obtain 1000 bytes of virtual storage from subpool 223. The
system returns the address of the storage in register 3. If the request fails, the
system abends the caller.
LA 2,1000
STORAGE OBTAIN,LENGTH=(2),ADDR=(3),SP=223,COND=NO,LOC=ANY

Release the 1000 bytes obtained above from subpool 223 and abend the caller if
the request fails. Assume that the length of the storage is still in register 2 and the
address of the storage is in register 3.
STORAGE RELEASE,LENGTH=(2),ADDR=(3),SP=223,COND=NO
.
.

Example 2
Code the instructions to obtain 4096 bytes of virtual storage from subpool 227 —
above 16 megabytes, if possible. The address is returned at location STRGA. The
protection key is the caller’s PSW key. The system is to assign the storage to be
obtained to the primary address space. The system is to store the return code at
location MY_RC.
STORAGE OBTAIN,LENGTH=ONE_PAGE,ADDR=STRGA,SP=MY_SUBPOOL,

CALLRKY=YES,LOC=ANY,COND=YES,OWNER=PRIMARY,RTCD=MY_RC

To release the 4096 bytes obtained above from subpool 227, issue:
L 2,KEY_5
STORAGE RELEASE,LENGTH=ONE_PAGE,ADDR=STRGA,SP=MY_SUBPOOL,

KEY=(2),COND=YES,RTCD=MY_RC
.
.

MY_RC DS F
STRGA DS F
KEY_5 DC X’00000050’
ONE_PAGE EQU 4096
MY_SUBPOOL EQU 227

Note that, when the caller passes the key in a register, the key must be in bits
24-27. Note also, that KEY=KEY_5 is not valid, as KEY_5 is neither a register nor a
decimal number.

Example 3
Code the instructions to obtain 4096 bytes of virtual storage from subpool 227.
Indicate that, if the system cannot obtain 4096 bytes, the caller can settle for as
little as 1024 bytes. The system returns the address of the storage obtained at
location STRGA. The protection key is 5. The system is to store the return code at
location MY_RC.
STORAGE OBTAIN,LENGTH=(ONE_PAGE,ONE_K),ADDR=STRGA, X

SP=MY_SUBPOOL,KEY=5,LOC=ANY,COND=YES,RTCD=MY_RC
ST 0,STRG_LEN

Release the storage from subpool 227, obtained above. Note that you cannot
specify LENGTH=STRG_LEN.
L 2,KEY_5
L 3,STRG_LEN
STORAGE RELEASE,LENGTH=(3),ADDR=STRGA,SP=MY_SUBPOOL, X

KEY=(2),COND=YES,RTCD=MY_RC
.
.

STORAGE Macro

STORAGE — Obtain and Release Storage 125

STRG_LEN DS F
MY_RC DS F
STRGA DS F
KEY_5 DC X’00000050’
ONE_K EQU 1024
ONE_PAGE EQU 4096
MY_SUBPOOL EQU 227

Example 4
Code the instructions to set up an 18-word save area, such as one that a program
in AR address space control (ASC) mode would obtain to call a program in primary
mode. The program issuing the STORAGE macro is in 31-bit addressing mode, and
the code is reentrant.
PGM CSECT
PGM AMODE 31
PGM RMODE ANY

BAKR 14,0 SAVE CALLER’S ARS, GPRS AND RETURN
* ADDRESS ON LINKAGE STACK

SAC 512 SWITCH TO AR ASC MODE
LAE 12,0(15,0) SET UP PROGRAM BASE REGISTER AND AR
USING PGM,12
STORAGE OBTAIN,LENGTH=72 GET REENTRANT SAVEAREA
LAE 13,0(1,0) PUT SAVEAREA ADDRESS IN AR/GPR 13
MVC 4(4,13),=C’F1SA’ PUT ACRONYM INTO SAVEAREA TO

* INDICATE STATUS SAVED ON LINKAGE STACK
.

* BEGIN PROGRAM CODE HERE

To release this save area, issue the following instructions:
.
LAE 1,0(0,13) COPY SAVEAREA ADDRESS
STORAGE RELEASE,ADDR=(1),LENGTH=72 FREE SAVEAREA
.
SLR 15,15 SET RETURN CODE OF ZERO
PR RETURN TO CALLER, RESTORE CALLERS STATUS

STORAGE Macro

126 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SUSPEND — Suspend Execution of an RB

Description

Suspend an SRB
To suspend an SRB, use the variation of the SUSPEND macro described
under “SUSPEND — Suspend Execution of an SRB” on page 129.

To suspend execution of a request block (RB), use this variation of the SUSPEND
macro. The RB remains suspended until a subsequent RESUME macro causes the
RB to resume execution.

Environment
The requirements for the caller are:

Minimum authorization : Supervisor state with PSW key 0
Dispatchable unit mode : Task
Cross memory mode : Any
AMODE: 24- or 31-bit
ASC mode : Primary or secondary
Interrupt status : Can be either enabled or disabled
Locks : Can hold the CPU or local lock
Control parameters : Must be in the caller’s primary address space

Programming Requirements
The caller must include the IHAPSA mapping macro and the CVT mapping macro
specifying DSECT=YES.

Restrictions
The list and execute forms of the SUSPEND macro are not valid for suspending
execution of an RB.

Input Register Information
Before issuing the SUSPEND macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter or using it as a base register.

Output Register Information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Address of the suspended TCB
1 Address of the suspended RB

© Copyright IBM Corp. 1988, 2002 127

2-10 Unchanged
11-15 Used as work registers by the system

Performance Implications
None.

Syntax
The SUSPEND macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SUSPEND.

SUSPEND

� One or more blanks must follow SUSPEND.

RB=PREVIOUS Default : RB=PREVIOUS
RB=CURRENT

Parameters
The parameters are explained as follows:

RB=PREVIOUS
RB=CURRENT

Specifies which RB on the TCB to suspend. The current RB is the one that is
executing; it is the first RB on the RB chain. The previous RB is the one that
follows the current RB on the RB chain.

ABEND Codes
070

See z/OS MVS System Codes for an explanation and programmer responses for
this code.

Return and Reason Codes
None.

Example
Suspend the execution of the most recently chained request block of the current
task.
SUSPEND RB=CURRENT

SUSPEND Macro for RBs

128 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SUSPEND — Suspend Execution of an SRB

Description

Suspend an RB
To suspend an RB, use the variation of the SUSPEND macro described under
“SUSPEND — Suspend Execution of an RB” on page 127.

To request suspension of a supervisor request block (SRB), use this variation of the
SUSPEND macro.

When a caller issues the SUSPEND macro for an SRB, the system passes control
to an exit routine identified on the SUSPEND macro and passes the suspend token
to the routine. The exit routine decides whether to suspend the SRB or allow the
SRB to continue execution and informs the system of its decision. If the SRB is to
be suspended, the exit routine must store the suspend token so that the token can
later be used to resume the SRB. The system takes the action requested by the
exit routine. If the SRB is suspended, the SRB remains suspended until a
subsequent RESUME macro either causes the SRB to resume execution or purges
the SRB. If the exit routine allows the SRB to continue execution, control returns to
the program that issued the SUSPEND macro.

Note: If the suspend completes successfully, the system will release any local lock
that the caller might have held.

Environment
The requirements for the caller are:

Minimum authorization : Supervisor state or PSW key 0 - 7
Dispatchable unit mode : SRB
Cross memory mode : Any
AMODE: 31-bit
ASC mode : Primary or access register (AR)
Interrupt status : Enabled for interrupts
Locks : The caller may hold the local or CML lock but is not required

to hold any
Control parameters : Must be in the caller’s primary address space or addressable

through the caller’s dispatchable unit access list (DU-AL)

Programming Requirements
Programming requirements for the calling program are:

v Before issuing the SUSPEND macro, ensure that the global symbol &SYSASCE
is correctly set to indicate the ASC mode of your program. To test or set this
global symbol, use the SYSSTATE macro.

v Programs in AR ASC mode must ensure that parameter addresses are
ALET-qualified.

Restrictions
None.

© Copyright IBM Corp. 1988, 2002 129

Input Register Information
Before issuing the SUSPEND macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter or using it as a base register.

Output Register Information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Performance Implications
None.

Syntax
The standard form of the SUSPEND macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SUSPEND.

SUSPEND

� One or more blanks must follow SUSPEND.

SPTOKEN=sptoken addr sptoken addr: RX-type address.

,EXIT=exit addr exit addr: RX-type address or register (2) - (12).

,EXITPARM=exitparm addr exitparm addr: RX-type address.

,RSCODE=rscode addr rscode addr: RX-type address.

SUSPEND Macro for SRBs

130 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained as follows:

SPTOKEN=sptoken addr
Specifies the address of an 8-byte location where the system is to place the
suspend token that identifies the SRB that is to be suspended.

,EXIT=exit addr
The 31-bit address of the suspend exit routine. The suspend exit routine must
be addressable in the caller’s primary address space.

,EXITPARM=exitparm addr
The 31-bit address of the parameters to be passed to the suspend exit routine.

,RSCODE=rscode addr
Specifies the address of the fullword where the system is to place the resume
code optionally returned by the suspend exit routine or by the program that
issued the RESUME macro.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and content of the
information provided is at the discretion of the user and may be any valid
coding values.

ABEND Codes
017

See z/OS MVS System Codes for an explanation and programmer responses for
this code.

Return Codes
When the SUSPEND macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 20. Return Codes for the SUSPEND Macro

Return Code Meaning and Action

00 Meaning : The SRB was successfully suspended and resumed. If you code
the RSCODE parameter, the program that issues the RESUME macro might
have stored a value into RSCODE.

Action : None.

04 Meaning : The exit routine elected to allow the SRB to continue execution. If
you coded the RSCODE parameter, the exit routine might have stored a
value into RSCODE.

Action : None.

SUSPEND Macro for SRBs

SUSPEND — Suspend Execution of an SRB 131

Table 20. Return Codes for the SUSPEND Macro (continued)

Return Code Meaning and Action

08 Meaning : Environmental error. A program tried to issue the SUSPEND
macro from an SRB after the SRB abended with code X’47B’. This SRB
cannot be suspended because it is in the process of being abended.

Action : None required. However, you might take some action based upon
your application.

0C Meaning : Program error. A program tried to issue the SUSPEND macro
from within the suspend exit. The suspend exit tried to resuspend the SRB.

Action : Change your suspend exit program so it does not issue a
SUSPEND request.

20 Meaning : Program error. An error occurred in the exit routine.

Action : Correct your suspend exit program to remove program errors.

24 Meaning : A system error occurred.

Action : Retry the request.

Example
Suspend the execution of an SRB.
...

SUSPEND SPTOKEN=TOKEN,EXIT=EXITADD,RSCODE=RCODE...
RCODE DS F’0’
EXITADD DC A(EXITRTN)
TOKEN DS CL8...

SUSPEND (SRB)—List Form
For programs that require reentrant code, use the list form of the SUSPEND macro
together with the execute form of the macro. The list form of the macro defines an
area of storage that the execute form of the macro uses to store parameter values.

Syntax
The list form of the SUSPEND macro is valid only for suspending an SRB. It is
written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SUSPEND.

SUSPEND

� One or more blanks must follow SUSPEND.

MF=L

SUSPEND Macro for SRBs

132 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained under the standard form of the SUSPEND macro
with the following exception:

MF=L
Requests the list form of SUSPEND.

SUSPEND (SRB)—Execute Form
For programs that require reentrant code, use the execute form of the SUSPEND
macro together with the list form. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the SUSPEND macro is valid only for suspending an SRB. It is
written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SUSPEND.

SUSPEND

� One or more blanks must follow SUSPEND.

SPTOKEN=sptoken addr sptoken addr: RX-type address.

,EXIT=exit addr exit addr: RX-type address or register (2) - (12).

,MF=(E,cntl addr) cntl addr: RX-type address or register (2) - (12).

,EXITPARM=exitparm addr exitparm addr: RX-type address.

,RSCODE=rscode addr rscode addr: RX-type address.

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained under the standard form of the SUSPEND macro
with the following exception:

SUSPEND Macro for SRBs

SUSPEND — Suspend Execution of an SRB 133

,MF=(E,cntl addr)
Requests the execute form of SUSPEND. cntl addr must be the address of the
parameter list provided by the list form of the macro.

SUSPEND Macro for SRBs

134 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SVCUPDTE — SVC Update

Description
Use the SVCUPDTE macro to dynamically replace or delete SVC table entries, or
return the SVC number of a routine at a specified entry point. Callers who use this
service are responsible for providing recovery. Improper deletion or replacement of
system-provided SVC routines causes unpredictable results and might terminate the
system.

The resource name, SYSZSVC TABLE, is available as the operand of an ENQ or
DEQ macro, to be used when you must serialize the execution of a program that
uses the SVCUPDTE macro.

See z/OS MVS Programming: Authorized Assembler Services Guide for additional
information about the SVCUPDTE macro.

Environment
The requirements for the caller are:

Minimum authorization : Supervisor state and PSW key 0
Dispatchable unit mode : Task or SRB
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled or disabled for I/O and external interrupts
Locks : No locks held
Control parameters : None

Programming Requirements
Ensure that the code for the SVC routine added to the SVC table has the correct
attributes for the type of SVC specified.

The caller must include the CVT mapping macro.

Restrictions
None.

Input Register Information
Before issuing the SVCUPDTE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter or using it as a base register.

Output Register Information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

© Copyright IBM Corp. 1988, 2002 135

On input, register 13 must contain the address of a 72-byte save area.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 One of the following:

v If EXTRACT is specified: The SVC number
v If REPLACE or DELETE is specified: Unchanged

1-13 Unchanged
14 Used as a work register by the system
15 Return code

Performance Implications
None.

Syntax
The SVCUPDTE macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SVCUPDTE.

SVCUPDTE

� One or more blanks must follow SVCUPDTE.

num num: Symbol, decimal number, hexadecimal number (for example, X‘02’), or
register (2) - (12). Do not specify num with EXTRACT.
Note: num cannot be 109, 116, 122, or 137 unless the ESR specification is
also used.

,REPLACE
,DELETE
,EXTRACT
,EXTRACTANY

,TYPE=1 Note : TYPE is only valid with REPLACE.
,TYPE=2
,TYPE=3
,TYPE=4
,TYPE=6

,EP=addr addr: A-type address, decimal number, hexadecimal number, or register (2) -
(12). addr should be a full 31-bit value with AMODE in bit 0.

,EPNAME=entry-name entry-name: Symbol
Note : EP and EPNAME are not needed with the DELETE option.

,LOCKS=(lname, lname,...) lname: CMS or LOCAL.
Note : LOCKS is invalid with DELETE and EXTRACT, and cannot be specified
with TYPE=6.

SVCUPDTE Macro

136 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,APF=NO Default : APF=NO
,APF=YES Note : APF is only valid with REPLACE.

,AR=NO Default : AR=NO
,AR=YES Note : AR is valid only with REPLACE.

,NPRMPT=NO Default : NPRMPT=NO
,NPRMPT=YES Note : NPRMPT is only valid with REPLACE.

,RELATED=value value: Any valid macro keyword specification.

,ESR=esr esr: decimal number, or register (2) - (12).
,USEECVT=NO Default : USEECVT=NO
,USEECVT=YES

Parameters
The parameters are explained as follows:

num
Specifies the number of the SVC that is being inserted or deleted.

,REPLACE
,DELETE

Specifies the function to be performed. REPLACE indicates that an SVC table
entry is to be inserted in the SVC table. This could be a new SVC or a
replacement for an existing SVC. DELETE indicates that the specified SVC
number is to be deleted from the SVC table.

If you issue an SVC instruction with a deleted or undefined SVC number, the
program abnormally ends with a system completion code of X'Fnn' (nn is the
operand of the SVC instruction, in hexadecimal). However, if you issue an
SVCUPDTE macro using the DELETE parameter and specify a previously
deleted SVC number, no abnormal end results.

,EXTRACT
Indicates that the user has supplied an EP or EPNAME and wishes to have the
SVC number of that routine returned in register 0. The num parameter is not
valid with this option.

,EXTRACTANY
Indicates that the user has supplied an EP or EPNAME and wishes to have the
SVC or extended SVC number of that routine returned in register 0.

For a non-extended SVC
Bit 0 of register 0 has a value of 0. Bits 24–31 contain the SVC number.

For an extended SVC
Bit 0 of register 0 has a value of 1. Bits 16–23 contain the ESR number.
Bits 24–31 contain the SVC number.

The num parameter is not valid with this option.

,TYPE=1
,TYPE=2
,TYPE=3

SVCUPDTE Macro

SVCUPDTE — SVC Update 137

,TYPE=4
,TYPE=6

Specifies the SVC type for a REPLACE request. See the topic “Programming
Conventions for SVC Routines” in z/OS MVS Programming: Authorized
Assembler Services Guide for information concerning the characteristics and
restrictions for each type of SVC.

,EP=addr
Specifies the entry point address of the SVC routine. The addressing mode of
the entry point is defined by bit 0 of the entry point address of the SVC routine.
If bit 0=1, the SVC routine will be entered in 31-bit addressing mode; if bit 0=0,
the SVC routine will be entered in 24-bit addressing mode.

,EPNAME=entry-name
Specifies the entry name of the SVC routine. The entry name must be the load
module name or alias of a module in LPA or the entry name of a module link
edited into the nucleus. The AMODE of the SVC routine is determined when the
SVC is link edited.

,LOCKS=(lname,lname,...)
Specifies the lock(s) required when the SVC routine executes. The lock(s)
specified can be CMS or LOCAL. This parameter is valid only with REPLACE.

Notes:

1. TYPE=1 must not specify LOCAL.

2. TYPE=6 cannot specify any locks.

3. TYPE=2, 3, or 4 must specify LOCAL if CMS is specified.

,APF=YES
,APF=NO

Specifies whether or not the invocation of the SVC is to be restricted to
authorized programs. This parameter is valid only with REPLACE.

,AR=YES
,AR=NO

Specifies whether or not the SVC can be issued by a program in access
register mode. If you specify NO, a program that issues the SVC while in
access register mode abends with a completion code of X‘0F8’. This parameter
is valid only with REPLACE.

,NPRMPT=YES
,NPRMPT=NO

Indicates whether or not the SVC can be preempted for I/O interruptions.

,RELATED=value
Provides information to document the macro by relating the function performed
to another service or function. The format can be any valid coding value that
the user chooses.

,ESR=esr
Specifies the extended SVC routing number of an extended SVC. You may
supply a decimal number or a value in register (2) - (12). When you supply an
explicit SVC number, the ESR parameter is only allowed with SVC numbers
109, 116, 122, and 137. When you provide the SVC number in a register, the
ESR specification is ignored if the SVC number is not 109, 116, 122, or 137.
This parameter is not valid with EXTRACT. When ESR is specified, the TYPE
parameter is only used to validate other parameters, because each extended
SVC has a predefined type that cannot be changed.

SVCUPDTE Macro

138 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Note: When using SVC screening with the ESR parameter, the system ignores
the screening information associated with the ESR number itself (for
example, 109). The system only uses screening information associated
with the routing code.

,USEECVT=YES
,USEECVT=NO

If you have verified that you are running OS/390 Release 10 or higher by
checking the feature bits in the CVT, you may use this optional parameter to
avoid some system processing. Specifying YES allows the system to locate the
SVCUPDTE service with a pointer in the ECVT instead of using the NUCLKUP
service. You must be running in AMODE 31 to use this parameter. This
parameter also requires the IHAECVT mapping macro.

ABEND Codes
None.

Return Codes
When the SVCUPDTE macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 21. Return Codes for the SVCUPDTE Macro

Return Code Meaning and Action

00 Meaning : The macro completed successfully.

Action : None.

04 Meaning : The macro was coded incorrectly. For example, the user
requested REPLACE without specifying an SVC number.

Action : Correct the error in the program that issued the macro. Verify that
the execute form of the macro correctly references the list form.

08 Meaning : Program error. The DELETE parameter was not specified
correctly.

Action : Correct the error in the program that issued the request. Verify that
the execute form of the macro correctly references the list form.

0C Meaning : Program error. A REPLACE request contained incorrect
information. For example, the user specified an SVC type that was not 1
through 6, or the specified entry point address was not on a halfword
boundary.

Action : Correct the error in the program that issued the request. Verify that
the execute form of the macro correctly references the list form.

10 Meaning : Program error. A REPLACE request contained illogical
information. For example:

v A type 6 SVC specified a lock.

v Neither an entry point nor an EPNAME was provided for a REPLACE
request.

v Both an entry point and an EPNAME are provided.

v The entry point provided is zero.

v The CMS lock was requested without the LOCAL lock.

Action : Correct the error in the program that issued the request. Verify that
the execute form of the macro correctly references the list form.

14 Meaning : Program error. The function specified was not REPLACE,
DELETE, or EXTRACT.

Action : Verify that the function specified is REPLACE, DELETE, or
EXTRACT.

SVCUPDTE Macro

SVCUPDTE — SVC Update 139

Table 21. Return Codes for the SVCUPDTE Macro (continued)

Return Code Meaning and Action

18 Meaning : Program error. The user has attempted to update an extended
SVC router entry in the SVC table (num was specified as 109, 116, 122, or
137).

Action : Correct the error in the program that issued the macro. Verify that
the execute form of the macro correctly references the list form.

1C Meaning : Environmental error. Unable to locate the entry point address for
an EPNAME specification.

Action : Verify that all parts of the product or application are currently
installed.

20 Meaning : Program error. An EXTRACT request contains illogical
information. For example:
v Neither an entry point address nor an EPNAME is specified.
v Both an entry point address and an EPNAME are specified.
v An SVC number is specified.
v The entry point address specified is zero.

Action : Correct the error in the program that issued the macro. Verify that
the execute form of the macro correctly references the list form.

24 Meaning : Environmental error. Unable to locate the SVC routine for the
EXTRACT request.

Action : Verify that all parts of the product or application are currently
installed.

28 Meaning : System error. An error occurred while updating the SVC table.

Action : Retry the request.

44 Meaning : Program error. A request was made to update an extended SVC,
but no extended SVC routing code was provided.

Action : When updating an extended SVC, use the ESR parameter to
specify the extended SVC routing code.

48 Meaning : Program error. A request was made to update a non-extended
SVC, but an extended SVC routing code was provided.

Action : When updating an non-extended SVC, do not use the ESR
parameter.

52 Meaning : Program error. A request was made to update an extended SVC,
but the supplied SVC type did not match the system-defined type for that
extended SVC.

Action : When updating an non-extended SVC, use the TYPE parameter to
specify the system-defined type for that particular extended SVC.

Example 1
Delete SVC 200 from the SVC table.
SVCUPDTE 200,DELETE

Example 2
Insert SVC 201 in the SVC table. This is a type 2 SVC, with entry point at location
SVCADDR. The SVC cannot be preempted for I/O interruptions.
SVCUPDTE 201,REPLACE,NPRMPT=NO,TYPE=2,EP=SVCADDR

Example 3
Replace SVC 202 in the SVC table. This is a type 1 SVC with entry point at the
location in register 2.

SVCUPDTE Macro

140 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SVCUPDTE 202,REPLACE,TYPE=1,EP=(2)

Example 4
Replace SVC 203 in the SVC table. SVC 203 is a type 4 SVC requiring the LOCAL
lock. The routine has been loaded into LPA with the name MYSVC.
SVCUPDTE 203,REPLACE,TYPE=4,LOCKS=LOCAL,EPNAME=MYSVC

Example 5
Determine the SVC number associated with the name IGC062. The SVC number is
to be returned in register 0.
SVCUPDTE ,EXTRACT,EPNAME=IGC062

Example 6
Replace SVC 202 in the SVC table. This is a type 3 SVC with entry point at explicit
location X‘FFEC00’. Note that this example uses a symbol as the SVC number.
SVCUPDTE SVCNUM,REPLACE,TYPE=3,EP=X’FFEC00’

.

.

.
SVCNUM EQU 202

SVCUPDTE—List Form
The list form of the SVCUPDTE macro builds a nonexecutable parameter list that
can be referred to by the execute form of the SVCUPDTE macro.

Syntax
The list form of the SVCUPDTE macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SVCUPDTE.

SVCUPDTE

� One or more blanks must follow SVCUPDTE.

num num: Symbol, decimal number, hexadecimal number (for example X‘02’).
Note : This parameter must be specified on the execute and the list form of
the macro. Do not specify num with EXTRACT.

,REPLACE
,DELETE
,EXTRACT
,EXTRACTANY

,TYPE=1 Note : TYPE is not valid with DELETE.
,TYPE=2
,TYPE=3

SVCUPDTE Macro

SVCUPDTE — SVC Update 141

,TYPE=4
,TYPE=6

,EP=addr addr: A-type address, decimal number, or hexadecimal number.

,EPNAME=entry-name entry-name: Symbol
Note : EP and EPNAME are not needed with the DELETE option. This
parameter must be supplied on either the execute or the list form.

,LOCKS=(lname, lname,...) lname: CMS or LOCAL.
Note : This option is only valid with REPLACE and must not be specified with
TYPE=6.

,APF=NO Default : APF=NO
,APF=YES Note : APF is only valid with REPLACE.

,AR=NO Default : AR=NO
,AR=YES Note : AR is valid only with REPLACE.

,NPRMPT=NO Default : NPRMPT=NO
,NPRMPT=YES Note : NPRMPT is only valid with REPLACE.

,RELATED=value value: Any valid macro keyword specification.

,ESR=esr esr: decimal number, or register (2) - (12).

,MF=L

Parameters
The parameters are explained under the standard form of the SVCUPDTE macro
with the following exception:

,MF=L
Specifies the list form of the SVCUPDTE macro.

Example 1
Use the list form of the macro to replace SVC 202 in the SVC table. It is a type 2
SVC with entry point at location SVCADDR. The SVC routine needs the local lock.
SVCUPDTE 202,REPLACE,TYPE=2,LOCKS=LOCAL,MF=L,EP=SVCADDR

Example 2
Use the list form of the macro to replace SVC 201 in the SVC table. The routine is
a type 2 SVC.
SVCUPDTE 201,REPLACE,TYPE=2,MF=L

SVCUPDTE—Execute Form

Syntax
The execute form of the SVCUPDTE macro is written as follows:

SVCUPDTE Macro

142 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SVCUPDTE.

SVCUPDTE

� One or more blanks must follow SVCUPDTE.

num num: Register (2) - (12).
Note : This parameter must be supplied on either the execute or the list form
of the macro with REPLACE or DELETE, and it must not be specified with
EXTRACT.

,EP=addr addr: Register (2) - (12).
Note : This parameter must be supplied on either the execute or the list form
of the macro. This parameter is not needed with the DELETE option.

,EPNAME=entry-name entry-name: Symbol
Note : EP and EPNAME are not needed with the DELETE option. This
parameter must be supplied on either the execute or the list form.

,RELATED=value value: Any valid macro keyword specification.

,USEECVT=NO Default : USEECVT=NO
,USEECVT=YES

,MF=(E,addr) addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained under the standard form of the SVCUPDTE macro
with the following exception:

,MF=(E,addr)
Specifies the execute form of the SVCUPDTE macro.

Example
Use the execute form of the SVCUPDTE macro to perform the function specified by
the parameter list whose address is given in register 2.
SVCUPDTE MF=(E,(2))

SVCUPDTE Macro

SVCUPDTE — SVC Update 143

SVCUPDTE Macro

144 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SWAREQ — Invoke SWA Manager in Locate Mode

Description
The SWAREQ macro has no standard form. It only has a list, an execute, and a
modify form. The MF parameter, which indicates the form of the macro, is required.

When you invoke this macro in execute form, it uses the two parameters, FCODE
and EPA, to modify the parameter list, which is at the location you specify by the
addr value in the MF=(E,addr) parameter. After ensuring the validity of the
parameters, it invokes the SWA manager in locate mode. The SWA manager
obtains its input from the parameter list, and performs the function associated with
the specified FCODE. If you do not specify any parameters, the macro assumes the
parameter list already exists, and it simply invokes the SWA manager.

The modify form of SWAREQ is functionally the same as the execute form, except
that the macro only modifies the parameter list without invoking the SWA manager.
The list form of SWAREQ generates the parameter list that is modified by the other
two forms of the macro, and it does not invoke the SWA manager.

Environment
The requirements for the caller are:

Minimum authorization : Problem state and any PSW key; see the UNAUTH=NO
parameter description for an exception.

Dispatchable unit mode : Task
Cross memory mode : PASN=SASN=HASN; see the UNAUTH parameter

description for an exception.
AMODE: 24- or 31-bit; UNAUTH=YES requires 31-bit addressing

mode.
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held; see the UNAUTH parameter description for an

exception.
Control parameters : Must be in the caller’s primary address space

Programming Requirements
The caller must include the following mapping macros:
v IEFZB505
v IEFJESCT
v CVT
v IEFQMIDS

If you have specified through JES parameters that SWA is to be located above 16
megabytes, you must be in 31-bit addressing mode to access SWA. See z/OS
JES2 Initialization and Tuning Guide or z/OS JES3 Initialization and Tuning Guide
for information about locating SWA above 16 megabytes.

Restrictions
None.

© Copyright IBM Corp. 1988, 2002 145

Input Register Information
On input to the macro, register 13 must contain the address of a standard 18-word
save area.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 When control returns from SWAREQ, used as a work register by

the system.

When control does not return from SWAREQ, the address of a
16-byte area containing:

Bytes 1-4 Address of the QMPA

Bytes 5-12 Not an intended programming interface; record this
information and provide it to the appropriate IBM
support personnel.

Bytes 13-16 Address of the failing EPA
1 When control returns from SWAREQ, used as a work register by

the system.

When control does not return from SWAREQ, abend code 0B0.
2-12 Unchanged
13 If AMODE 31, then high bit will be cleared. If AMODE 24, then high

byte will be cleared.
14 Unchanged
15 Return code

Performance Implications
None.

ABEND Codes
The caller of the SWAREQ macro might receive abend code X'0B0' with one of the
following reason codes:

X'04'
X'08'
X'0C'
X'1C'
X'20'
X'24'
X'28'
X'34'

See z/OS MVS System Codes for explanations and responses for these codes.

Return and Reason Codes
The hexadecimal return code is in register 15. When you specify UNAUTH=YES,
the return codes have the following meanings:

Table 22. Return Codes for SWAREQ, UNAUTH=YES

Return Code Meaning

0 The SWAREQ service was successful.

8 The SVA in the SWA prefix was not valid.

SWAREQ Macro

146 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

||
|

Table 22. Return Codes for SWAREQ, UNAUTH=YES (continued)

Return Code Meaning

24 The SVA does not correspond to any virtual address.

28 The pointer to the EPAL was not valid.

When you do not specify UNAUTH=YES, the return codes have the following
meanings:

Table 23. Return Codes for the SWAREQ Macro

Return Code Meaning

0 The SWAREQ service was successful.

8 The SVA in the SWA prefix was not valid.

0C You attempted to read a block that was not yet written.

10 The length for a SWA block was not valid.

1C The block id was not valid.

20 The block pointer was not valid.

24 The SVA does not correspond to any virtual address.

SWAREQ—List Form

Syntax
The list form of the SWAREQ macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SWAREQ.

SWAREQ

� One or more blanks must follow SWAREQ.

,FCODE=fncde fncde: Function code

,EPA=addr addr: Address of the pointer to the EPA.
In the list form, this address may only be specified symbolically.

,MF=L

Parameters
The parameters are explained as follows:

,FCODE=fncde
Specifies the function code for the locate mode request. Valid codes are:

SWAREQ Macro

SWAREQ — Invoke SWA Manager in Locate Mode 147

RL Read/Locate
WL Write/Locate

For more information about the meaning of each code, see z/OS MVS
Programming: Authorized Assembler Services Guide.

,EPA=addr
Specifies the address of the pointer to the extended parameter area (EPA). Do
not specify the EPA itself on the EPA parameter.

,MF=L
Specifies the list form of the SWAREQ macro.

SWAREQ—Execute Form

Syntax
The execute form of the SWAREQ macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SWAREQ.

SWAREQ

� One or more blanks must follow SWAREQ.

,FCODE=fncde fncde: Function code

,EPA=addr addr: External parameter area pointer address.
It may be specified symbolically, as a register enclosed in parentheses, or as
a symbol equated to a register enclosed in parentheses.

,UNAUTH=YES Default : UNAUTH=NO.
,UNAUTH=NO

,MF=(E,addr) addr: RX-type address or register (1) - (12).

Parameters
The parameters are explained under the list form of the SWAREQ macro, with the
following exceptions:

,UNAUTH=YES
,UNAUTH=NO

UNAUTH=YES specifies that the system is to invoke the unauthorized form of
the SWA manager. The unauthorized form of the SWA manager provides the
output of the RL function of the authorized SWA manager. If you also specify

SWAREQ Macro

148 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

the FCODE parameter, the SWAREQ macro checks the syntax of the FCODE
parameter but does not use the function code.

To use SWAREQ with the default of UNAUTH=NO, you must be in supervisor
state, holding no locks, in task mode, and not in cross memory mode. However,
when you are using SWAREQ to perform a Read Locate, you can override
these restrictions by specifying UNAUTH=YES. You must also issue the macro
IEFZB505 LOCEPAX=YES, which generates a longer, 28 byte, EPA.

To use SWAREQ with UNAUTH=YES, you must be in 31-bit addressing mode.

,MF=(E,addr)
E specifies the execute form of the SWAREQ macro, and addr specifies the
address of the parameter list.

SWAREQ—Modify Form

Syntax
The modify form of the SWAREQ macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SWAREQ.

SWAREQ

� One or more blanks must follow SWAREQ.

,FCODE=fncde fncde: Function code

,EPA=addr addr: External parameter area pointer address.
It may be specified symbolically, as a register enclosed in parentheses, or as
a symbol equated to a register enclosed in parentheses.

,MF=(M,addr) addr: RX-type address or register (1) - (12).

Parameters
The parameters are explained under the list form of the SWAREQ macro, with the
following exceptions:

,MF=(M,addr)
M specifies the modify form of the SWAREQ macro, and addr specifies the
address of the parameter list.

SWAREQ Macro

SWAREQ — Invoke SWA Manager in Locate Mode 149

SWAREQ Macro

150 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SWBTUREQ — Call SJF SWBTU Processing Services

Description
SWBTUREQ requests services for processing scheduler work block text units
(SWBTUs). The RETRIEVE service can be requested on the SWBTUREQ macro.
RETRIEVE obtains text unit information from SWBTUs for a specified set of keys
and places the information in the output area defined by the caller.

An SWBTU is made up of JCL statement or dynamically created JCL information in
contiguous text unit format. More than one SWBTU may be used to represent a
single JCL statement.

Examples of the use of SWBTUREQ RETRIEVE are the JES sysout separator
page installation exits. See the HASX15A member of SYS1.SAMPLIB for a sample
exit.

For the RETRIEVE service, there are three calls that you can make:

v A call to determine the local working storage size needed for the service

v A call to determine the output area size needed to accommodate all the matched
text units

v A call to obtain the text units that match the requested keys.

Environment
The requirements for the caller are:

Minimum authorization : Problem state, and any PSW key. For SWBTUREQ
RETRIEVE, the caller must have a PSW key that matches
the key of the caller’s storage.

Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : Must be in the primary address space

Programming Requirements
The caller must set up recovery for SWBTUREQ RETRIEVE. The caller must
include the CVT and IEFJESCT mapping macros. IEFSJTRP maps the storage for
the required RETRIEVE service parameter list. “SWBTUREQ RETRIEVE Input
Parameters” on page 153 describes the parameter list’s input fields. “SWBTUREQ
RETRIEVE Output” on page 154 describes the fields that contain output on return
from the SWBTUREQ RETRIEVE service.

The caller is responsible for supplying all storage for SWBTUREQ RETRIEVE
processing. You can use SWBTUREQ RETRIEVE with different combinations of
parameters to determine the local working storage size needed, and to determine
and obtain the output area size needed for a particular request. A third combination
of parameters allows you to invoke SWBTUREQ RETRIEVE to obtain text unit
information. Table 24 on page 153 lists the required combination of parameters to
use based on the type of service call you are making.

© Copyright IBM Corp. 1988, 2002 151

Restrictions
None.

Input Register Information
On input to the SWBTUREQ macro, the caller must insure that general purpose
register (GPR) 13 points to a standard, 72-byte save area.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 If GPR 15 contains a zero, GPR 0 is used as a work register by the

system. If GPR 15 contains return code 12, GPR 0 contains a
reason code; otherwise, GPR 0 contains zero.

1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

Performance Implications
None.

Syntax
The standard form of the SWBTUREQ macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SWBTUREQ

SWBTUREQ

� One or more blanks must follow SWBTUREQ

REQUEST=service service: Service name

,PARM=addr addr: RX-type address, or registers (2) - (12). Register 1 is the default.

Parameters
The parameters are explained as follows:

REQUEST=service
Specifies the SJF SWBTU service to be called. RETRIEVE is the valid service
name.

,PARM=addr
Specifies the address of the parameter list for the service requested. The

SWBTUREQ Macro

152 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

parameter list for the RETRIEVE service is IEFSJTRP. “SWBTUREQ
RETRIEVE Input Parameters” lists the parameter fields you must initialize.

SWBTUREQ RETRIEVE Service
Use RETRIEVE to obtain text unit information for a specified set of JCL or output
descriptor keys. The retrieved information is placed in a caller-defined output area.

Table 24. Parameter Combinations for SWBTUREQ RETRIEVE Functions

Function Required Parameters

Obtain local
working storage
size

SJTRID, SJTRVERS, SJTRLEN, SJTRSTOR, SJTRSTSZ, SJTRAREA,
and SJTRSIZE. SJTRSTOR, SJTRSTSZ, SJTRAREA, and SJTRSIZE
should be zero on this invocation.

Obtain output
area size

SJTRID, SJTRVERS, SJTRLEN, SJTRSTOR, SJTRSTSZ, SJTRSWBN,
SJTRSWBA, SJTRKIDN, SJTRKIDL. Fill in SJTRSTOR and SJTRSTSZ
with the values returned when you invoked the macro to determine the
local working storage size. SJTRAREA and SJTRSIZE should be zero
on this invocation.

Retrieve
requested keys

SJTRID, SJTRVERS, SJTRLEN, SJTRSTOR, SJTRSTSZ, SJTRSWBN,
SJTRSWBA, SJTRKIDN, SJTRKIDL. Fill in SJTRSTOR, SJTRSTSZ,
SJTRAREA, and SJTRSIZE with the values returned when you invoked
the macro to determine the local working storage size and the output
buffer size.

SWBTUREQ RETRIEVE Input Parameters
For each SWBTUREQ invocation, you need to initialize certain fields of parameter
list IEFSJTRP. Figure 4 on page 155 illustrates some of the parameter fields and
their relationships to other fields. The list below describes the valid value
assignments for all input parameters in IEFSJTRP.

SJTRID
The identifier ‘SJTR’ of the SWBTUREQ RETRIEVE parameter list. Assign the
symbolic equate SJTRCID to this field.

SJTRVERS
The current version number of the SWBTUREQ RETRIEVE service. Assign the
symbolic equate SJTRCVER to this field.

SJTRLEN
The length of the SWBTUREQ RETRIEVE parameter list (IEFSJTRP). Assign
the symbolic equate SJTRLGTH to this field.

SJTRSTOR
The local working storage pointer or zero.

SJTRSTSZ
The size of the local working storage area required by the service.

SJTRSWBN
The number of SWBTUs in the SWBTU address list table. The table is mapped
by SJTRSBTL.

SJTRSWBA
The address of the SWBTU address list table from which text units are
retrieved. The address list is mapped by SJTRSBTL.

SJTRAREA
The address of the text unit output area.

SWBTUREQ Macro

SWBTUREQ — Call SJF SWBTU Processing Services 153

SJTRSIZE
The size of the text unit output area.

SJTRKIDN
The number of entries in the key list. The key list is mapped by SJTRKEYL.

SJTRKIDL
The address of the list of keys that are to be retrieved. The key list is mapped
by SJTRKEYL.

SJTRSBTL
SWBTU address list from which text units are returned. The list contains one
entry per SWBTU. Parameter SJTRSWBN specifies the number of entries in
the list; SJTRSWBA specifies the address of the list. More than one SWBTU
may be used to represent a single JCL statement.

SJTRSTUP
An SWBTU address entry.

SJTRKEYL
The requested list of keys to be retrieved. Parameter SJTRKIDN specifies the
number of entries in the list; SJTRKIDL specifies the address of this list.

SJTRKYID
The key to be used for the retrieve. If you are using the RETRIEVE service
to obtain information about output descriptors, the key values for the
attributes are defined in mapping macro IEFDOKEY. See z/OS MVS Data
Areas, Vol 2 (DCCB-ITZYRETC) for the mapping provided by IEFDOKEY.
z/OS MVS Programming: Authorized Assembler Services Guide lists the
dynamic output keys and their JCL equivalents.

SWBTUREQ RETRIEVE Output
These parameters are returned with values on completion of RETRIEVE service
processing.

SJTRREAS
The reason code returned. The reason codes are defined in “Return and
Reason Codes” on page 155.

SJTRWKSZ
The local working storage size required by the SWBTUREQ service.

SJTRTULN
The size of the area needed to contain all matched requested text units.

SJTRERRP
This field contains a zero unless a parameter list error (key list or SWBTU
address entry error) occurs. In the case of a key list error (return code 8 with a
reason code of 65), the address of the key list entry in error appears in the
field. In the case of a SWBTU address entry error (return code 8 with a reason
code of 19 or 28), the address of the SWBTU address entry in error appears in
the field.

SJTRAREA
The address of the text unit output area. The text unit output area contains the
matched text unit strings organized by key in the order they were requested.
Matched text unit strings are contiguous in the text unit output area. For the
mapping of each text unit see the IEFDOTUM mapping macro in z/OS MVS
Data Areas, Vol 2 (DCCB-ITZYRETC).

SWBTUREQ Macro

154 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SJTRKEYL
The requested key list. Parameter SJTRKIDN specifies the number of entries in
the list; SJTRKIDL specifies the address of this list.

SJTRTPAD
The address of a text unit for this key in the output area. Values are
returned in this field only if the key and text unit match. If the address is not
found, this field is zero.

ABEND Codes
None.

Return and Reason Codes
Return codes appear in register 15. If you receive return code 12, the reason code
appears in register 0. If you receive return codes 0, 4, or 8, the reason code
appears in output field SJTRREAS. Return and reason codes are defined in macro
IEFSJTRC. The hexadecimal return and reason codes from the SWBTUREQ
RETRIEVE service are as follows:

SJTRSTOR
SJTRSTSZ

SJTRSWBN
SJTRSWBA

SJTRAREA
SJTRSIZE

SJTRKIDL
SJTRKIDN

IEFSJTRP

The SWBUT address
list. Each entry in
this table addresses
an input SWBTU.

@ input SWBTU

On input, contains
a list of requested
keys (SJTRKYID).

On output:

SJTRTPAD

SJTRKEYL

Local working
storage area

Working Storage

On return from
SWBTUREQ RETRIEVE
processing, it contains
matched text units.

Text Unit Output Area

Contains input
text units

Input SWBTU

SJTRSBTL

on output

Figure 4. Relationship of Data and Work Areas Referenced in IEFSJTRP

SWBTUREQ Macro

SWBTUREQ — Call SJF SWBTU Processing Services 155

Table 25. Return and Reason Codes for SWBTUREQ RETRIEVE

Return Code Reason Code Meaning and Action

00 None Meaning : RETRIEVE processing completed
successfully. At least one text unit and key match
was found. For any unmatched text units, the
corresponding SJTRTPAD values are zero.

Action : None.

04 None Meaning : Either the caller did not provide enough
storage for the service or none of the requested
items was found. This is the expected return code
if you issue the RETRIEVE request to obtain the
working storage size or output area size.

004 Meaning : RETRIEVE requires more local working
storage. The size of the local working storage, as
specified in input parameter SJTRSTSZ, is not
large enough for the service. The amount of local
working storage needed appears in output
parameter SJTRWKSZ.

Action : Repeat the request and supply the
amount of storage returned in SJTRWKSZ in
SJTRSTSZ.

008 Meaning : RETRIEVE requires more text unit
output area storage. The size needed for the
output storage area appears in output parameter
SJTRTULN.

Action : Repeat the request and supply the
amount of storage returned in SJTRTULN in
SJTRAREA.

064 Meaning : Successful completion. None of the
keys in the input key list were found in the
SWBTUs. All corresponding SJTRTPAD values
are zero. There are no returned text units in the
output area.

Action : None required.

08 None Meaning : The parameter list is not valid.

015 Meaning : The parameter length specified in
SJTRLEN is not valid for the specified version.

016 Meaning : The version number specified is not
correct for this service.

018 Meaning : The caller must provide at least one
SWBTU. Input parameter SJTRSWBN must be
greater than zero, and SJTRSWBA must
reference the SWBTU address list.

Action : Set SJTRSWBN to a value greater than
zero; set SJTRSWBA to the address of the
SWBTV address list.

019 Meaning : The specified SWBTU is not valid.
Either one of the entries is zero, or the SWBTU
address entry is not valid. Output parameter
SJTRERRP contains the address of the SWBTU
address entry.

Action : Specify a valid SWBTU referenced by the
SWBTU address is in SJTRERRP.

SWBTUREQ Macro

156 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 25. Return and Reason Codes for SWBTUREQ RETRIEVE (continued)

Return Code Reason Code Meaning and Action

01A Meaning : Program error. The text length shown in
the DOCNTLEN field in the IEFDOTUM mapping
macro is not valid. SWBTUREQ RETRIEVE
processing stops. One possible cause of the
problem is a storage overlay.

Action : If your program has overlaid storage,
correct the error and rerun the program.
Otherwise, contact the appropriate IBM support
personnel.

028 Meaning : Either all of the verbs for the SWBTUs
or all of the labels for the SWBTUs do not match.
Output parameter SJTRERRP contains the
address of the SWBTU address entry where the
inconsistency was found.

Action : Correct the SWBTU in the SWBTU
address table entry whose address is in
SJTRERRP.

029 Meaning : The output area size, defined by the
combination of the input parameters SJTRAREA
and SJTRSIZE, is not valid. One of the
parameters is zero and the other is not zero.

Action : Set SJTRAREA and SJTSIZE to values
greater than 0. (See “SWBTUREQ RETRIEVE
Input Parameters” on page 153.)

065 Meaning : The key entry is not valid. Input
parameter SJTRKYID is zero. Output parameter
SJTRERRP contains the address of the error key
entry, SJTRKYID.

Action : Correct the key in error (the key pointed
to by SJTRKYID).

066 Meaning : At least one key must be requested.
Input parameter SJTRKIDN must be greater than
zero and SJTRKIDL must reference the key entry
list.

Action : Set SJTRKIDN and SJTRKIDL to values
greater than zero. (See input parameter
description.)

0C None Meaning : A severe parameter list error occurred.
The reason code appears in register 0.

014 Meaning : An incorrect parameter ID was
specified. SJTRID is not ‘SJTR’.

Action : See “SWBTUREQ RETRIEVE Input
Parameters” on page 153 for SJTRID.

015 Meaning : An incorrect parameter length was
specified. SJTRLEN is not at least as large as the
common parameter list size, 36 bytes.

Action : See “SWBTUREQ RETRIEVE Input
Parameters” on page 153 for SJTRLEN.

016 Meaning : The version number is not correct.
SJTRVERS is less than one.

Action : See “SWBTUREQ RETRIEVE Input
Parameters” on page 153 for SJTRVERS.

SWBTUREQ Macro

SWBTUREQ — Call SJF SWBTU Processing Services 157

Table 25. Return and Reason Codes for SWBTUREQ RETRIEVE (continued)

Return Code Reason Code Meaning and Action

017 Meaning : The service specified by SWBTUREQ
REQUEST=service, is not known.

Action : Specify a valid request for 'service'.

14 None Meaning : SJF encountered a condition that would
have caused an abend. If processing had
continued, an abend would have occurred.

18 None Meaning : The service routines for SWBTUREQ
are not available.

Example
Invoke the SWBTUREQ RETRIEVE service to obtain text unit information for three
output descriptor attributes (title, name, and room). Represent the output descriptor
with SWBTU1 and SWBTU2. Use register 6 to contain the address of SWBTU1,
and register 7 to contain the address of SWBTU2. Use AREA to define the text unit
output area. Define the service’s local working storage in LCLSTOR. Establish an
ESTAE for a recovery environment.

On return, register 15 contains return code 0, register 0 contains reason code 0,
and SJTRREAS contains reason code 0. The output areas from the service contain
the following information:

v SJTRAREA contains two contiguous text units that were in the SWBTUs and
were requested in the key list.

v SJTRWKSZ contains the size of local working storage required for the
SWBTUREQ RETRIEVE service.

v SJTRTULN contains the size of the area used to return the two matched text
units.

v SJTRKEYL contains unchanged SJTRKYIDs.

SJTRTPAD contains the pointers for the matched text units and zero for
unmatched text units. For this example, SJTRTPAD’s first entry points to the
first text unit returned in the text unit output area. The second entry contains
zero, and the third entry points to the second text unit returned in the text unit
output area.

* *
* Fill in 3 requested keys in the key list, SJTRKEYL. *
* *

*

XC KEYLIST,KEYLIST Initialize KEYLIST area
LA R2,KEYLIST Point to start of key list
USING SJTRKEYL,R2 Establish addressability

*
MVC SJTRKYID+0*SJTRKLEN,=Y(DOTITLE) Title Key
MVC SJTRKYID+1*SJTRKLEN,=Y(DONAME) Name Key
MVC SJTRKYID+2*SJTRKLEN,=Y(DOROOM) Room Key

*

* *
* Fill in 2 SWBTU pointers in SWBTU address list, SJTRSBTL. *
* *

*

XC SWBTULST,SWBTULST Initialize SWBTU pointer list area
*

SWBTUREQ Macro

158 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

LA R3,SWBTULST Point to start of SWBTU pointer list
USING SJTRSBTL,R3 Establish addressability

*
ST R6,SJTRSTUP Set address of first SWBTU in 1st

* entry of SWBTU address list
LA R3,SJTRSLEN(,R3) Point to second entry in SWBTU
ST R7,SJTRSTUP Set address of second SWBTU in 2nd

* entry of SWBTU address list
*

* *
* Fill in the SWBTUREQ RETRIEVE parameter list, IEFSJTRP. *
* *

*

XC SJTRP(SJTRLGTH),SJTRP Clear the parameter list
MVC SJTRID,=A(SJTRCID) Parameter list ID
MVI SJTRVERS,SJTRCVER Parameter list version
LA R4,SJTRLGTH Get parameter list length
STH R4,SJTRLEN Set parameter list length

*
LA R4,LCLSTOR Get local working storage address
ST R4,SJTRSTOR Set local working storage address
LA R4,STORLGTH Get local working storage size
STH R4,SJTRSTSZ Set local working storage size

*
LA R4,AREA Get text unit output area address
ST R4,SJTRAREA Set text unit output area address
LA R4,AREALGTH Get text unit output area size
STH R4,SJTRSIZE Set text unit output area size

*
ST R2,SJTRKIDL Set key list address
LA R4,KEYNUM Get number of requested keys
STH R4,SJTRKIDN Set number of request keys

*
LA R3,SWBTULST Point to start of SWBTU pointer list
ST R3,SJTRSWBA Set address of SWBTU address list
LA R4,SWBTUNUM Get number of SWBTUs
STH R4,SJTRSWBN Set number of SWBTUs

*

* *
* Set up Register 1 to point to a word of storage that *
* contains the address of the parameter list, IEFSJTRP. *
* *

*

LA R4,SJTRP Address of
ST R4,SJTRPPTR the SWBTUREQ RETRIEVE
LA R1,SJTRPPTR parameter list

*

* *
* Invoke the SWBTUREQ macro to retrieve the matched text units *
* for items in the requested key list. *
* *

*

SWBTUREQ REQUEST=RETRIEVE Issue the SJF macro
*

* *
* Check for a zero return code. *
* *

*

LTR R15,R15 Check service return code

SWBTUREQ Macro

SWBTUREQ — Call SJF SWBTU Processing Services 159

BNZ NODATA Go to nonzero return processing
*
* Code to process zero return code from SWBTUREQ ...
* .
* .
* .
*
NODATA DS 0H Label used for branch when SWBTUREQ
* service returns with a nonzero
* return code.
*
* Code to process nonzero return code from SWBTUREQ...
* .
* .
* .
*

* *
* Storage definitions *
* *

*
IEFSJTRP DSECT=NO SWBTUREQ Retrieve parameter list

*
SJTRPPTR DS A Field used to contain SJTRP address
*
KEYLIST DS CL24 Area mapped by SJTRKEYL:
* enough storage for 3 entries
*
SWBTULST DS CL16 Area mapped by SJTRSBTL:
* enough storage for 2 entries
*
AREA DS CL600 Area used by SWBTUREQ service to move
* matched text units for output.
* 600 bytes is large enough and was
* chosen at random.
AREALGTH EQU *-AREA Size of AREA
*
LCLSTOR DS CL1000 Area used by SWBTUREQ service as
* local working storage.
STORLGTH EQU *-LCLSTOR Size of LCLSTOR
*

* *
* Equates and Constants *
* *

*
R0 EQU 0 Register 0
R1 EQU 1 Register 1
R2 EQU 2 Register 2
R3 EQU 3 Register 3
R4 EQU 4 Register 4
R15 EQU 15 Register 15
*
SWBTUNUM EQU 2 Indicates number of SWBTUs
KEYNUM EQU 3 Indicates number of requested keys
*

IEFDOKEY Dynamic Output keys
CVT DSECT=YES CVT mapping macro
IEFJESCT IEFJESCT mapping macro

SWBTUREQ Macro

160 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SYNCH and SYNCHX — Take a Synchronous Exit to a
Processing Program

Description
The SYNCH macro takes a synchronous exit to a processing program. After the
processing program has been executed, the program that issued the SYNCH macro
regains control. The SYNCH macro is also described in z/OS MVS Programming:
Assembler Services Reference ABE-HSP with the exception of the KEYADDR,
STATE, KEYMASK, and XMENV parameters. These parameters are restricted to
programs in supervisor state, key 0-7, or APF-authorized.

If you are executing in 31-bit addressing mode, you must use the MVS/SP Version
2 of this macro, or a later version.

The SYNCH macro is intended for use by primary mode programs only. If your
program runs in access register (AR) mode, use SYNCHX, which provides the
same function as SYNCH. Descriptions of SYNCH and SYNCHX in this book are:

v The standard form of the SYNCH macro, which includes general information
about the SYNCH and SYNCHX macros and some specific information about the
SYNCH macro. The syntax of the SYNCH macro is presented, and all SYNCH
parameters are explained.

v The standard form of the SYNCHX macro, which presents information specific to
the SYNCHX macro and callers in AR mode.

v The list form of the SYNCH and SYNCHX macros.

v The execute form of the SYNCH and SYNCHX macros.

If the caller is in AR mode, the system passes the following values, unchanged, to
the processing program:

v ARs 0-13

v Bits 16 and 17 of the current PSW indicating the ASC mode (primary or AR
mode, where primary=secondary=home)

v Extended authorization index (EAX)

Parameters for SYNCH and SYNCHX must be in the caller’s primary address
space. Callers in AR mode must initialize AR 1 to zero before issuing SYNCHX.

Register Information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the GPRs contain:

Register Contents
0-1 Values the processing program placed there before it returned to

the caller
2-13 If RESTORE=YES, unchanged

© Copyright IBM Corp. 1988, 2002 161

If RESTORE=NO, values the processing program placed there
before it returned to the caller

14 Used as a work register by the system
15 Value the processing program placed there before it returned to the

caller

Syntax
The SYNCH macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SYNCH.

SYNCH

� One or more blanks must follow SYNCH.

entry point addr entry point addr: RX-type address, or register (2) - (12) or (15).

,RESTORE=NO Default : RESTORE=NO
,RESTORE=YES

,KEYADDR=addr addr: RS-type address, or register (2) - (12).
,KEYADDR=NOKEYADDR Default : KEYADDR=NOKEYADDR

(The key in the TCB is used.)

,STATE=PROB Default : STATE=PROB
,STATE=SUPV

,KEYMASK=addr addr: RX-type address, or register (0) - (12).
,XMENV=addr addr: RX-type address or register (0) - (12).

,AMODE=24 Default : AMODE=CALLER
,AMODE=31 Note: AMODE=DEFINED can only be specified if the entry point is provided

in a register.
,AMODE=DEFINED
,AMODE=CALLER

Parameters
The parameters are explained as follows:

entry point addr
Specifies the address of the entry point of the processing program to receive
control.

,RESTORE=NO

SYNCH and SYNCHX Macros

162 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,RESTORE=YES
Specifies whether registers 2-13 are to be restored when control is returned to
the issuer of SYNCH.

,KEYADDR=addr
,KEYADDR=NOKEYADDR

addr specifies the address of a one-byte area that contains the key in which the
exit is to receive control. The key must be in bits 0-3; bits 4-7 must be zero. If
KEYADDR=addr is not specified, the key in the TCB is used as the default.

,STATE=PROB
,STATE=SUPV

Specifies the state in which the requested program receives control. PROB
specifies problem state and SUPV specifies supervisor state.

,KEYMASK= addr
Specifies the address of a halfword, which along with the protect key of the
currently active TCB, will be an operand in an OR instruction. The results of
that instruction produce the PKM of the routine to which your program will take
a synchronous exit.

If you specify KEYMASK, do not specify XMENV.

,XMENV=addr
Specifies the address of a parameter list that the caller passes to the SYNCH
macro service. The parameter list contains values that set up a cross memory
environment for the new PRB. The parameter list consists of a 10-byte list of
values that determine some of the characteristics the PRB will have when it
receives control. The parameter list must reside in the primary address space
and the AR that qualifies the address must be set be set to zero. The format of
the parameter list is as follows:

Bytes Content of field

0-1 The value X‘0A’

2-3 PKM value, which along with the protect key of the currently active TCB,
will be an operand in an OR instruction. The results of that instruction
produce the PKM of the routine to which the synchronous is to be taken.

4-5 SASN - defining the secondary address space for the exit routine

6-7 Extended authorization index (EAX) for the exit routine

8-9 PASN - defining the primary address space for the exit routine

If you specify XMENV, do not specify KEYMASK.

,AMODE=24
,AMODE=31
,AMODE=DEFINED
,AMODE=CALLER

Specifies the addressing mode in which the requested program is to receive
control.

If AMODE=24 is specified, the requested program will receive control in 24-bit
addressing mode.

If AMODE=31 is specified, the requested program will receive control in 31-bit
addressing mode.

If AMODE=DEFINED is specified, the user must provide the entry point using a
register, not an RX-type address. The requested program will receive control in

SYNCH and SYNCHX Macros

SYNCH and SYNCHX — Take a Synchronous Exit to a Processing Program 163

the addressing mode indicated by the high-order bit of the entry point address.
If the bit is off, the requested program will receive control in 24-bit addressing
mode; if the bit is set, the requested program will receive control in 31-bit
addressing mode.

If AMODE=CALLER is specified, the requested program will receive control in
the addressing mode of the caller.

Example 1
Take a synchronous exit to a processing program whose entry point address is
specified in register 8.
SYNCH (8)

Example 2
Take a synchronous exit to a processing program labeled SUBRTN and restore
registers 2-13 when control is returned.
SYNCH SUBRTN,RESTORE=YES

Example 3
Take a synchronous exit to a processing program whose entry point address is
specified in register 5, modify the program’s protect key by the KEYADDR and
KEYMASK values, and restore registers 2-13 when control returns.
SYNCH (5),RESTORE=YES,KEYADDR=KEYBYTE,KEYMASK=MSKADDR

.

.

.
KEYBYTE DC X’80’
MSKADDR DC X’0080’

Example 4
Take a synchronous exit to the program located at the address given in register 8
and restore registers 2-13 when control returns. Indicate that this program is to
execute in 24-bit addressing mode.
SYNCH (8),RESTORE=YES,AMODE=24

SYNCHX — Take a Synchronous Exit to a Processing Program
The SYNCHX macro allows a program running in primary or AR mode to take a
synchronous exit to a processing program. This macro is the same as the SYNCH
macro, except that, for callers in AR mode, it generates code and addresses that
are appropriate in AR mode. All parameters on the SYNCH macro are valid for the
SYNCHX macro.

You can issue the SYNCHX macro in 64-bit addressing mode. However,
AMODE=DEFINED can only be used to SYNCHX to amode 24 or amode 31
programs.

Before you issue the SYNCHX macro, issue the SYSSTATE ASCENV=AR macro to
tell the SYNCHX macro to generate code appropriate for AR mode.

Syntax
The SYNCHX macro is written as follows:

SYNCH and SYNCHX Macros

164 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SYNCHX.

SYNCHX

� One or more blanks must follow SYNCHX.

entry point addr entry point addr: RX-type address, or register (2) - (12) or (15).

,RESTORE=NO Default : RESTORE=NO
,RESTORE=YES

,KEYADDR=addr addr: RX-type address, or register (2) - (12).
,KEYADDR=NOKEYADDR Default : KEYADDR=NOKEYADDR (The key in the TCB is used.)

,STATE=PROB Default : STATE=PROB
,STATE=SUPV

,KEYMASK=addr addr: RX-type address, or register (0) - (12).
,XMENV=addr addr : RX-type address or register (0) - (12).

,AMODE=24 Default : AMODE=CALLER
,AMODE=31
,AMODE=64
,AMODE=DEFINED Note: AMODE=DEFINED can only be specified if the entry point is provided

in a register. AMODE=DEFINED can only be used to SYNCHX to amode 24
and amode 31 programs.

,AMODE=CALLER

Parameters
The parameters are described under the syntax of the standard form of the SYNCH
macro.

SYNCH and SYNCHX—List Form
The list form of the SYNCH or SYNCHX macro is used to construct a control
program parameter list.

Syntax
The list form of the SYNCH or SYNCHX macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SYNCH or SYNCHX.

SYNCH and SYNCHX Macros

SYNCH and SYNCHX — Take a Synchronous Exit to a Processing Program 165

SYNCH or SYNCHX

� One or more blanks must follow SYNCH or SYNCHX.

,RESTORE=NO Default : RESTORE=NO
,RESTORE=YES

,STATE=PROB Default : STATE=PROB
,STATE=SUPV

,KEYMASK=addr addr: A-type address.
,XMENV=addr addr: RX-type address or register (0) - (12).

,AMODE=24 Default : AMODE=CALLER
,AMODE=31
,AMODE=DEFINED
,AMODE=CALLER

,MF=L

Parameters
The parameters are explained under the standard form of the SYNCH macro with
the following exception:

,MF=L
Specifies the list form of the SYNCH macros.

Example
Use the list form of the SYNCH macro to specify that registers 2-13 are to be
restored when control returns from executing the SYNCH macro and that the
addressing mode of the program is to be defined by the high-order bit of the entry
point address. Assume that the execute form of the macro specifies the program
address.
SYNCH ,RESTORE=YES,AMODE=DEFINED,MF=L

SYNCH and SYNCHX—Execute Form
The execute form of the SYNCH or SYNCHX macro uses a remote program
parameter list that can be generated by the list form of SYNCH or SYNCHX.

Syntax
The execute form of the macro is written as follows:

name name: Symbol. Begin name in column 1.

SYNCH and SYNCHX Macros

166 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

� One or more blanks must precede SYNCH or SYNCHX.

SYNCH

� One or more blanks must follow SYNCH or SYNCHX.

entry point addr entry point addr: RX-type address, or register (2) - (12) or (15).

,RESTORE=NO
,RESTORE=YES

,KEYADDR=addr addr: RX-type address, or register (2) - (12).
,KEYADDR=NOKEYADDR

,STATE=PROB
,STATE=SUPV

,KEYMASK=addr addr: RX-type address, or register (0) - (12).
,XMENV=addr addr: RX-type address or register (0) - (12).

,AMODE=24 Note: AMODE=DEFINED can only be specified if the entry point is provided
in a register.

,AMODE=31
,AMODE=DEFINED
,AMODE=CALLER

,MF=(E,ctrl addr) ctrl addr: RX-type address or register (1), (2) - (12).

Parameters
The parameters are explained under the standard form of the SYNCH macro with
the following exceptions:

,KEYADDR=NOKEYADDR
Indicates that the default(the key in the TCB) should be used instead of the key
in the parameter list defined by a list form of the macro.

,MF=(E,ctrl addr)
Specifies the execute form of the SYNCH macro using a list generated by the
list form of SYNCH.

Example
Use the execute form of the SYNCH macro to take a synchronous exit to the
program located at the address given in register 8 and restore registers 2-13 when
control returns. Indicate that the program is to receive control in the same
addressing mode as the caller and that the parameter list is located at SYNCHL2.
SYNCH (8),RESTORE=YES,AMODE=CALLER,MF=(E,SYNCHL2)

SYNCH and SYNCHX Macros

SYNCH and SYNCHX — Take a Synchronous Exit to a Processing Program 167

SYNCH and SYNCHX Macros

168 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

SYSEVENT — System Event

Description
The SYSEVENT macro provides the interface to the system resource manager
(SRM). Using SYSEVENT mnemonics, you can notify SRM of an event or ask SRM
to perform a specific function.

Environment
The requirements for the ENTRY=BRANCH caller are:

Authorization : Supervisor state or PSW key 0 - 7
Dispatchable unit mode : Task or SRB.
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled or disabled for I/O and external interrupts
Locks : Callers that specify ENTRY=BRANCH must hold the LOCAL

lock for TRAXRPT, TRAXFRPT and TRAXERPT. There are
no locking requirements for the other SYSEVENTs.

The requirements for the ENTRY=SVC caller are:

Authorization : APF authorized
Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locking requirements

The following SYSEVENTs are unauthorized:

FREEAUX

QVS

REQFASD

The requirements are:

Authorization : Problem state, with any PSW key
AMODE: 31-bit

All other requirements are as noted above for ENTRY=BRANCH and ENTRY=SVC.

Programming Requirements
When you specify ENTRY=BRANCH, include the CVT mapping macro as a DSECT
in the calling program. If a specific SYSEVENT requires a parameter list in addition
to the information specified on the macro invocation, load register 1 with the
address of that parameter list before issuing the macro.

Restrictions and Limitations
Restrictions on the use of each SYSEVENT, including input and output
requirements, follow the descriptions of the parameters.

© Copyright IBM Corp. 1988, 2002 169

|

Input Register Information
When you specify ENTRY=BRANCH, register 13 must contain the address of a
72-byte save area on input. For specific input register requirements, see the
description of the specific SYSEVENT.

Output Register Information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Used as a work register by the system
1 One of the following:

v Unchanged, for ENCASSOC, STGTEST, TRAXRPT, TRAXFRPT,
TRAXERPT, REQASCL, REQASD, REQFASD, REQSRMST,
ENQHOLD, ENQRLSE, and QVS SYSEVENTs

v Status code for DONTSWAP, OKSWAP, and TRANSWAP
SYSEVENTs

2-13 Unchanged
14 Used as a work register by the system
15 One of the following:

v Return code, for ENCASSOC, TRAXRPT, TRAXFRPT,
TRAXERPT, REQASCL, REQASD, REQFASD, REQSRMST,
ENQHOLD, ENQRLSE, and QVS SYSEVENTs

v Used as a work register by the system, for DONTSWAP,
OKSWAP, STGTEST, and TRANSWAP SYSEVENTs

Syntax
The SYSEVENT macro is written as follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede SYSEVENT.

SYSEVENT

� One or more blanks must follow SYSEVENT.

sysevent mnemonic sysevent mnemonic: symbol.
Note: See the description of the parameters for the valid options.

SYSEVENT Macro

170 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,ENTRY=SVC Defaults:

ENTRY=BRANCH for the following SYSEVENTs:
v ENCASSOC
v ENCSTATE
v QVS
v TRAXERPT
v TRAXFRPT
v TRAXRPT
v REQFASD

,ENTRY=BRANCH ENTRY=SVC for the following SYSEVENTs:
DONTSWAP OKSWAP
TRANSWAP STGTEST
REQASCL REQASD
REQSRMST ENQHOLD
ENQRLSE REQLPDAT

,TYPE=BLOCK Note: TYPE=BLOCK and TYPE=BYTE are valid only
,TYPE=BYTE for SYSEVENT STGTEST; TYPE=2 is valid only
,TYPE=2 for SYSEVENT ENQHOLD and ENQRLSE.

Default: TYPE=BLOCK

,ASID=asid Address space id
,ASIDL=asidl

Parameters
The parameters are explained as follows:

sysevent mnemonic
Identifies the SYSEVENT being requested. The valid options are:

DONTSWAP
ENCASSOC
ENCSTATE
ENQHOLD
ENQRLSE
OKSWAP
REQASCL
REQASD
REQFASD
REQLPDAT
REQSRMST
STGTEST
TRAXERPT
TRAXFRPT
TRAXRPT
TRANSWAP

See “SYSEVENT Mnemonics” on page 172 for descriptions of these options.

,ENTRY=SVC
,ENTRY=BRANCH

Specifies the instruction used to pass control to SRM.

Only users who do not hold a lock can specify ENTRY=SVC.

SYSEVENT Macro

SYSEVENT — System Event 171

Branch entry is required when the caller holds a lock. It is also the only
supported entry for TRAXERPT, TRAXFRPT, TRAXRPT, REQFASD, and QVS.

TYPE=BLOCK
TYPE=BYTE

Indicates whether SYSEVENT STGTEST is to return values that reflect either
available central and expanded storage, or available expanded storage.
TYPE=BYTE requests central and expanded storage; TYPE=BLOCK requests
expanded storage.

TYPE=2
Indicates whether SYSEVENT ENQHOLD and ENQRLSE passes a parameter
list in register 1. The parameter list must be non-pageable and addressable via
the caller’s primary address space. To map the parameter list, use the IRAEVPL
mapping macro described in z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC).

ASID=register
ASIDL=asid

Specifies the address space identifier in ASIDL=asid, or the register containing
the address space identifier in ASID=register.

Either ASIDL or ASID is required for REQASD, REQFASD, ENQHOLD, and
ENQRLSE.

SYSEVENT Mnemonics
A description of the SYSEVENTs available for use follows. These mnemonics are
grouped according to the basic function that they perform.

Notify SRM of Transaction Completion
The SYSEVENTs TRAXRPT, TRAXFRPT, and TRAXERPT notify SRM that a
subsystem transaction has completed and provide the transaction’s starting time or
elapsed time and, optionally, its resource utilization. This performance data can be
reported using the resource management facility (RMF).

As of MVS/ESA SP 5.1 you should instead use the workload management services
to notify SRM of transaction start and completion times, as well as notifying SRM of
transaction delays encountered. For more information, see z/OS MVS
Programming: Workload Management Services.

In addition to the general requirements for SYSEVENTs, TRAXRPT, TRAXFRPT,
and TRAXERPT require the user to:

v Provide a parameter list

v If the issuing program is disabled, ensure that the parameter list and save area
are fixed

v Provide error recovery

A description of the individual mnemonics follows:

TRAXRPT
Notifies SRM that a transaction has completed and provides its start time.
Register 1 must point to a serialized parameter list with the following format:

Offset in Hex Length Field Description
00 8 Transaction start time in store clock instruction (STCK)

format
08 8 Subsystem name

SYSEVENT Macro

172 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Offset in Hex Length Field Description
10 8 Transaction name or blanks
18 8 User identification (USERID) or blanks
20 8 Transaction class or blanks

The names must be in EBCDIC format, left-justified, and padded with blanks.
Note that the subsystem name is restricted to four characters in length even
though the parameter list provides an eight-character field. Use the first four
characters of the field for the subsystem name.

TRAXFRPT
Notifies SRM that a transaction has completed and provides the elapsed time.
Because the issuer calculates the elapsed time before issuing the macro, this
path is shorter than the path for TRAXRPT. Register 1 must point to a serialized
parameter list with the following format:

Offset in Hex Length Field Description
00 4 Transaction elapsed time (1.024 milliseconds units)
04 4 Zero
08 8 Subsystem name
10 8 Transaction name or blanks
18 8 User identification (USERID) or blanks, as specified on the

USERID parameter in the IEAICSxx parmlib member
20 8 Transaction class or blanks

Note: To map the parameter list, use the IHATRBPL mapping macro described
in z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC).

The names must be in EBCDIC format, left-justified, and padded with
blanks. Note that the subsystem name is restricted to four characters in
length.

TRAXERPT
Notifies SRM that a transaction has completed, provides its start time, and
includes resource utilization data for determining service consumption. Register
1 must point to a serialized parameter list in the following format:

Offset in Hex Length Field Description
00 8 Transaction start time in STCK format
08 8 Subsystem name
10 8 Transaction name or blanks
18 8 User identification (USERID) or blanks
20 8 Transaction class or blanks
28 8 Task (TCB) time in STCK format or zeros
30 8 SRB time in STCK format or zeros
38 8 Main storage occupancy in page seconds (pages times

msec, where msec is task (TCB) time in 1.024 millisecond
units)

40 4 Logical I/O count or zeros
44 1 X‘00’ if the previous field contains the logical I/O count X‘80’

if the previous field contains the device connect time interval
(DCTI)

45 3 Reserved must be zero

SYSEVENT Macro

SYSEVENT — System Event 173

Note: To map the parameter list, use the IHATREPL mapping macro described
in z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC).

The names must be in EBCDIC format, left-justified, and padded with
blanks. Note that the subsystem name is restricted to four characters in
length.

Return and Reason Codes
When processing is completed for TRAXRPT, TRAXFRPT, and TRAXERPT
SYSEVENTs, the subsystem regains control at the instruction following the
SYSEVENT macro. The last byte of register 15 contains one of the following
hexadecimal return codes:

Table 26. Return Codes for the SYSEVENT Macro

Return Code Meaning

00 Data for the transaction has been reported successfully to the SRM.

08 Processing could not be completed at this time. No queue elements are
available for recording the data. No data is reported to the SRM, but an
immediate reissue could be successful.

0C Reporting is temporarily suspended for one of the following reasons:

v RMF workload activity reporting is not active.

v There is no installation control specification (IEAICSxx parmlib member
with RPGN specified for some subsystem other than TSO) in effect.

v The TOD clock is stopped.

No data is reported, but a later reissue could be successful.

10 Reporting is inoperative. The TOD clock is in error or the reporting interface
is not installed. No data is reported.

Example 1
Use the SYSEVENT TRAXRPT to report transaction data providing transaction
identifiers and the transaction start time. In the example, TRAXDESC is the name
of a storage area that is initialized with the subsystem name, transaction name,
userid and class information needed to pass to SRM.
.
.
.

Transaction begins Initialize transaction identifiers
(TRAXDESC)

STCK INITTIME Save start time
.

Process transaction
Transaction completes
LA R13,SVAREA Provide 72-byte save area
LA R1,PARMS Point to parameter area
MVC 0(8,R1),INITTIME Move in start time
MVC 8(32,R1),TRAXDESC Get subsystem name, transaction

name, userid, and class
SYSEVENT TRAXRPT
.
.

INITTIME DS D
PARMS DS 5D
SVAREA DS 18F
TRAXDESC DS CL40

SYSEVENT Macro

174 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Example 2
Use the SYSEVENT TRAXERPT to report transaction data, providing transaction
identifiers, start time and resource utilization data. In the example, TRAXDESC is
the name of a storage area that is initialized with the subsystem name, transaction
name, userid and class information needed to pass to SRM.
.
.

Transaction begins Initialize transaction identifiers
(TRAXDESC)

STCK INITTIME Save start time
.

Process transaction Accumulate resource utilization data
(TRAXDESC)

.
Transaction completes
LA R13,SVAREA Provide 72-byte save area
LA R1,PARMS Point to parameter area
MVC 0(8,R1),INITTIME Move in start time
MVC 8(64,R1),TRAXDESC Get subsystem name, transaction

name, user id, class, and
resource utilization data

SYSEVENT TRAXERPT
.
.
.

INITTIME DS D
PARMS DS 9D
SVAREA DS 18F
TRAXDESC DS CL72

Example 3
Use the SYSEVENT TRAXFRPT to report transaction data, providing transaction
identifiers and calculating the elapsed time. In the example, TRAXDESC is the
name of a storage area that is initialized with the subsystem name, transaction
name, userid and class information needed to pass to SRM.
.
.

Transaction begins Initialize transaction identifiers (TRAXDESC)
.
.

Process transaction Calculate elapsed time (TOTLTIME)
.

Transaction completes Calculate elapsed time (TOTLTIME)
LA R13,SVAREA Provide 72-byte save area
LA R1,PARMS Point to parameter area
MVC 0(4,R1),TOTLTIME Move in elapsed time
XC 4(4,R1),4(R1) Clear reserved field
MVC 8(32,R1),TRAXDESC Get subsystem name, transaction name,

user id, and class
SYSEVENT TRAXFRPT
.
.
.

TOTLTIME DS F
PARMS DS 5D
SVAREA DS 18F
TRAXDESC DS CL40

SYSEVENT Macro

SYSEVENT — System Event 175

Control Swapping
The SYSEVENTs DONTSWAP, OKSWAP, and TRANSWAP control swapping. The
choice of mnemonic depends on the period of time for which the address space is
to be non-swappable.

For a short period of time (less than one minute), use DONTSWAP to make it
non-swappable and OKSWAP to make it swappable.

For an extended period of time (more than one minute), use TRANSWAP to make
the address space non-swappable and OKSWAP to make it swappable.

Note: If you specify an ASID with DONTSWAP, OKSWAP, or TRANSWAP, that
ASID must specify the home address space. In other words, you can only
control swapping in the address space in which the SYSEVENT is issued. If
you specify a different address space, the request will fail.

A description of the individual mnemonics follows:

DONTSWAP
Notifies SRM that the address space from which this SYSEVENT is issued
cannot be swapped out until the system receives a matching OKSWAP for each
DONTSWAP issued or until the jobstep ends.

No input parameters are required. One of the following codes will be returned in
register 1, byte 3:

Hexadecimal
Code

Meaning

00 The request was honored.

04 The request was not honored because it was not for the current address
space.

08 The request was not honored because the issuer was not authorized or
the outstanding count of DONTSWAP requests had reached its
maximum.

OKSWAP
Notifies SRM that the address space from which the SYSEVENT was issued
can be considered for swapping.

No input parameters are required. One of the following codes will be returned in
register 1, byte 3:

Hexadecimal
Code

Meaning

00 The request was honored.

04 The request was not honored because it was not for the current address
space.

08 The request was not honored because the issuer was not authorized.

TRANSWAP
Forces a swap out. After the subsequent swap-in, frames are allocated from
preferred storage and the address space is non-swappable. TRANSWAP
prevents programs from allocating frames in reconfigurable storage. If the
program issuing SYSEVENT depends on the transition to complete, you should

SYSEVENT Macro

176 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

|
|
|
|

ensure that register 1 contains the address of an ECB. SYSEVENT will then
post this ECB when it swaps out the address space. If no dependency exists,
set register 1 to 0 (zero).

One of the following codes will be returned in register 1, byte 3:

Hexadecimal
Code

Meaning

00 The request was honored. If an ECB was specified, your program
should issue a WAIT macro specifying the same ECB.

04 The transition was previously done or the address space is permanently
non-swappable. If an ECB was specified it will not be posted.

If an ECB was specified, the following POST codes may occur in the last three
bytes of the ECB:

Hexadecimal
Code

Meaning

000000 The transition is complete.

000004 The address space became non-swappable before it could be swapped
out.

Example 1
Make the current address space non-swappable for a time period of less than one
minute.
SYSEVENT DONTSWAP

.

.

.
SYSEVENT OKSWAP

Example 2
Make the current address space non-swappable for an indefinite period of time.

SYSEVENT TRANSWAP
ST 1,RETCODE
CLI TSWP_RC,0
BNE FAILED
WTO ’TSWP SUCCESSFUL’
...
B DONE

FAILED EQU *
WTO ’TSWP UNSUCCESSFUL (BAD RC)’

DONE EQU *
...

RETCODE DS 0F
DS CL3

TSWP_RC DS FL1

Obtain System Measurement Information
STGTEST provides information about the current physical use of resources. This is
not an indication of how much virtual storage your installation will allow you to
obtain. For more information on obtaining virtual storage for hiperspaces or data
spaces, see DSPSERV.

SYSEVENT Macro

SYSEVENT — System Event 177

The user must supply the address of a storage area large enough to store the
requested data.

A description of the individual mnemonics follows:

STGTEST
Returns information about the amount of storage available in the system. The
purpose of SYSEVENT STGTEST is to help an application decide whether to
use an additional virtual storage area, such as a hiperspace. In ESA/390 mode,
this information is about either central and expanded or only expanded storage.

In z/Architecture mode, this information is about central storage only. The
TYPE=BLOCK parameter is not valid in this case, because expanded storage is
not supported in z/Architecture mode. For compatibility, STGTEST
TYPE=BLOCK will return the same data as TYPE=BYTE in z/Architecture
mode. This ensures that applications that use STGTEST before creating a
hiperspace will not fail.

When you use this information, be aware of the dynamic nature of storage.
Output of the SYSEVENT STGTEST represents the current state of storage
and does not reserve this storage for the caller or guarantee that it will be
available for use .

TYPE=BYTE
TYPE=BLOCK

In ESA/390 mode, this parameter specifies whether the system is to provide
information about central storage and expanded storage (through
TYPE=BYTE), or expanded storage (through TYPE=BLOCK). The default is
TYPE=BLOCK.

In z/Architecture mode, TYPE=BLOCK is not valid because expanded
storage is not supported. For compatibility, STGTEST TYPE=BLOCK and
TYPE=BYTE return the same data in z/Architecture mode.

Register 1 must contain the address of a three-word output area where SRM is to
return the information. After SRM returns, each word contains a storage amount
that represents a specific number of frames. Before you choose a number to use as
the basis for decision, be aware of how your decision affects the performance of the
system. The meaning of the returned values is:
v Use of the first number will affect system performance very little, if at all.
v Use of the second number might affect system performance to some degree.
v Use of the third number might substantially affect system performance.

If you base decisions on the value in the second or third word, SRM may have to
take processor storage away from other programs and replace it with auxiliary
storage.

If the requesting address space has storage isolation
If you are running your system in workload management compatibility mode, you
may be using storage isolation. To calculate the values for applications that have
storage isolation, SRM first calculates the values for each word as if storage
isolation were not in effect. It then modifies the values depending on:

v The number of frames the address space already has

v The minimum and (optionally) the maximum values specified through the PWSS
keyword in the IEAIPSxx member of parmlib

SYSEVENT Macro

178 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

The best way to understand SRM’s calculations when storage isolation is in effect is
through an example. Consider an application that issues SYSEVENT
STGTEST,TYPE=BLOCK to find out the number of expanded storage frames
available. In this example, the application:
v Is running in a performance group with storage isolation in effect
v Currently holds 100 frames

Assume that SRM has calculates a value of 20 frames for the first word if storage
isolation were not in effect. In this example, 20 is the base number .

Table 27 shows how SRM adjusts the base number to arrive at the value for word
one. Note how SRM takes into account the boundaries that are set on the PWSS
keyword. In calculating a value, SRM might add to the base number to match the
PWSS minimum number of frames. On the other hand, SRM might subtract from
the base number to match the PWSS maximum number of frames.

Table 27. Example of Output of Word One from SYSEVENT STGTEST

Relationship between what the application
holds (100 frames) and its PWSS setting

PWSS setting What value does SRM return?

The application holds fewer frames than its
PWSS minimum.

(190,*) 90

The PWSS minimum setting guarantees at least
190 frames. Therefore, SRM adds 70 to the
base number to bring the application to its
PWSS minimum.

The application holds more frames than its
PWSS minimum, but less than its PWSS
maximum minus the base number.

(50,*) 20 (the base number)

The PWSS minimum setting guarantees at least
50 frames and the application already holds 100.
Therefore, SRM does not make changes to the
base number.

The application holds more frames than its
PWSS minimum, and more than its PWSS
maximum minus the base number.

(50,105) 5

If SRM returned 20 frames (the base number),
the application would exceed its PWSS
maximum. Therefore, SRM changes the base
number to bring the application to its PWSS
maximum.

The application holds more frames than its
PWSS maximum.

(30,90) Zero

The application already exceeds its PWSS
maximum; therefore, SRM returns the value 0.

SRM adjusts the values for word two for storage isolation in the same way it adjusts
word one, as described in Table 27.

SRM does not directly consider storage isolation in calculating word three. However,
because the value of word two determines the value of word three, the value SRM
returns for word three indirectly reflects storage isolation.

If the example in Table 27 was for a TYPE=BYTE request, the effect of storage
isolation would be exactly the same. However, because the base number would
have reflected both expanded and central storage, the base number would probably
have been greater than 20.

See z/OS MVS Initialization and Tuning Guide if you want more information about:

SYSEVENT Macro

SYSEVENT — System Event 179

v The syntax of the PWSS keyword in IEAIPSxx
v Storage isolation

Example
An application needs a standard hiperspace. Before it makes the request, the
application uses SYSEVENT STGTEST to find out how much expanded storage is
available. The values that SRM returns determine how large a hiperspace the
application will create.

Obtain a report on the available expanded storage in the system.
LA 1,ESPARM
SYSEVENT STGTEST,TYPE=BLOCK

.

.
ESPARM DS 3F

The application will base its decision on the numbers in the first and second words
of the output area.

Obtain Address Space Classification Information (REQASCL)
The REQASCL SYSEVENT provides information about an address space’s
classification information. You must specify the address space id (ASID) with either
the ASID=register or the ASIDL=asid parameter.

The user must supply the address of a storage area large enough to hold the
requested data.

A description of the individual mnemonic follows:

REQASCL
Returns classification information about an address space.

The name is in EBCDIC format, left-justified, and padded with blanks.

Input Register Information
Register 1 must point to a parameter list. The parameter list for REQASCL must be
non-pageable and addressable via the caller’s primary address space. To map the
parameter list for REQASCL, use the IRARASC mapping macro described in z/OS
MVS Data Areas, Vol 2 (DCCB-ITZYRETC).

Return and Reason Codes
When processing is complete for the REQASCL, the last byte of register 15
contains one of the following hexadecimal return codes:

Table 28. Return Codes for REQASCL

Return Code Meaning

00 Successful completion.

04 Classification information returned may not reflect how the address space is
being managed

08 Input parameter list is not properly initialized (eyecatcher, version or size
specified is too small)

12 Classification information is not available

SYSEVENT Macro

180 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Input Register Information
Register 1 must point to a parameter list, as mapped by the IRARASC macro.

Obtain Address Space Related Information (REQASD and REQFASD)
The SYSEVENTs REQASD and REQFASD provide information about an address
space’s workload activity. You must specify the address space id (ASID) with either
the ASID=register or the ASIDL=asid parameter.

Both return the same kind of information. REQFASD is quicker; it does not serialize
data collection, and does not provide recovery of its own. The user must provide
the recovery for REQFASD.

The user must supply the address of a storage area large enough to hold the
requested data.

A description of the individual mnemonics follows:

REQASD
Returns workload activity information about an address space.

REQFASD
Returns the same information as REQASD, but is a fast path SYSEVENT, with
no recovery of its own.

The names are in EBCDIC format, left-justified, and padded with blanks.

Input Register Information
For both REQASD and REQFASD, register 1 must point to a parameter list. The
parameter list for REQASD must be non-pageable and addressable via the caller’s
primary address space. The parameter list for REQFASD must be addressable via
the caller’s primary address space. To map the parameter list for both REQASD
and REQFASD, use the IRARASD mapping macro described in z/OS MVS Data
Areas, Vol 2 (DCCB-ITZYRETC).

For REQFASD, register 13 must point to a workarea. The workarea must be
addressable via the caller’s primary address space. The workarea must be the
length in the RQFASDWA field which is defined in the IRARASD mapping.

Return and Reason Codes
When processing is complete for the REQASD and REQFASD SYSEVENTS, the
last byte of register 15 contains one of the following hexadecimal return codes:

Table 29. Return Codes for REQASD and REQFASD

Return Code Meaning

00 Successful completion.

04 Processing could not be completed at this time. A mode switch or policy
activation is in progress. A later reissue could be successful.

08 The parameter list is too small.

12 The ASID is not valid.

SYSEVENT Macro

SYSEVENT — System Event 181

Obtain Workload Management Mode Status Information (REQSRMST)
The REQSRMST SYSEVENT allows a caller to obtain information about the state of
workload management. It returns a parameter list that includes such things as:
v IPS and ICS, parmlib member suffixes (if in compatibility mode)
v OPT parmlib member suffix
v Active service policy information
v When and where the policy was activated
v Active service definition information
v When and where the service definition was installed

Note: The SRMSTCAP flag is provided to prospective callers of the REQLPDAT
SYSEVENT, to test if that SYSEVENT is available on the system. On
systems prior to z/OS V1R3, callers should first invoke the REQSRMST
SYSEVENT and check the SRMSTCAP flag before invoking the REQLPDAT
SYSEVENT. (See “Obtain Data for Defined Capacity (REQLPDAT)” for more
information.)

Input Register Information
Register 1 must point to a parameter list. The parameter list must be non-pageable
and addressable via the caller’s primary address space. To map the parameter list,
use the IRASRMST mapping macro described in z/OS MVS Data Areas, Vol 2
(DCCB-ITZYRETC).

Return and Reason Codes
When processing is complete for the REQSRMST SYSEVENT, the last byte of
register 15 contains one of the following hexadecimal return codes:

Table 30. Return Codes for REQSRMST

Return Code Meaning

00 Successful completion.

08 The parameter list is too small.

Obtain Data for Defined Capacity (REQLPDAT)
The REQLPDAT SYSEVENT allows a caller to obtain performance data related to a
defined capacity. When using a pricing model based on the logical capacity of
LPARs (rather than on a CEC’s physical capacity), the customer will specify the
defined capacity for a partition. Software that runs on a logical partition are then
charged for this defined capacity.

Monitoring products such as RMF need this performance data to better analyze the
partition’s average CPU consumption, how often WLM is capping the partition to
enforce the defined capacity, the average weight of the partition, etc.

Notes:

1. The REQLPDAT SYSEVENT, introduced in z/OS V1R3, is available to
downlevel systems. Before invoking this SYSEVENT on downlevel systems,
however, you must first invoke the REQSRMST SYSEVENT. If the SRMSTCAP
flag is turned on, then the system will support the REQLPDAT SYSEVENT.
Otherwise, invoking it will result in an abnormal termination. (See “Obtain
Workload Management Mode Status Information (REQSRMST)” for more
information.)

SYSEVENT Macro

182 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

2. You must set the field LPDatLen to the length of the entire parameter list before
invoking the REQLPDAT SYSEVENT. If the size of the parameter list is not
known (this will be the case when the SYSEVENT is invoked for the first time),
then you should set LPDatLen to either 0 or else obtain a sufficiently large
parameter list and then adjust LPDatLen accordingly. If the LPDatLen value is
smaller than the size of the parameter list, then the SYSEVENT will fail with
return code 4. In this case, the LPDatLen field will be set to the actual length of
the parameter list.

Input Register Information
Register 1 must point to a parameter list. The parameter list must be non-pageable
and addressable via the caller’s primary address space. To map the parameter list,
use the IRAMDC mapping macro described in z/OS MVS Data Areas, Vol 2
(DCCB-ITZYRETC).

Return and Reason Codes
When processing is complete for the REQLPDAT SYSEVENT, the last byte of
register 15 contains one of the following hexadecimal return codes:

Table 31. Return Codes for REQLPDAT

Return Code Meaning

00 Successful completion.

04 The parameter list is too small.

Identify Holder of a Resource (ENQHOLD)
Use the ENQHOLD SYSEVENT to identify a holder of a resource causing
contention. SRM may boost the service to the holder of the resource to help resolve
the contention more quickly. A holder can be either an address space or an
enclave. You must specify the address space in the ASID, or ASIDL parameter. If
you want to specify that an enclave is holding the resource, you must specify
x’8000’ in the ASID parameter, and access registers (AR) 0 and 1 must contain the
enclave token. The enclave token must have been obtained from the IWMECREA
macro.

If you issue the ENQHOLD SYSEVENT, you are responsible for issuing a
corresponding ENQRLSE SYSEVENT when the holder has released the resource.

There are some considerations to be aware of when using enclaves for tasks that
serialize on resources using the ENQ macro or the latch manager callable services.
A task cannot change its transaction status, that is, cannot join or leave an enclave,
while holding a resource using ENQ or the latch manager. Otherwise, enqueue
promotion processing may not work properly. The recommended sequence is:

v Join an enclave (through IWMEJOIN, IWMSTBGN, or SYSEVENT ENCASSOC).

v Obtain resource with ENQ or latch manager.

v Process using serialized resource.

v Release resource.

v Leave an enclave (through IWMELEAV, IWMSTEND, or SYSEVENT
ENCASSOC).

In addition, to ensure correct enqueue promotion processing, a task executing in an
enclave should not make the following types of ENQ requests:

SYSEVENT Macro

SYSEVENT — System Event 183

v directed enqueues, that is, issuing the ENQ macro with the TCB= parameter

v matching task enqueues, that is, issuing the ENQ macro with the MTCB or
MASID parameter.

Input Register Information
If you are specifying an enclave as a holder, access register (AR) 0 and 1 must
contain an enclave token.

If this SYSEVENT is invoked with the TYPE=2 keyword, then register 1 must point
to a parameter list. The parameter list must be non-pageable and addressable via
the caller’s primary address space. To map the parameter list, use the IRAEVPL
mapping macro described in z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC).

Return and Reason Codes
When processing is complete for the ENQHOLD SYSEVENT, the last byte of
register 15 contains one of the following hexadecimal return codes:

Table 32. Return Codes for ENQHOLD

Return Code Meaning

00 Successful completion.

08 Invalid enclave token specified.

Identify that a Holder has Released Resource (ENQRLSE)
Use the ENQRLSE sysevent to notify SRM that the holder of a resource causing
contention has released the resource. The inputs must be the same as those for
the ENQHOLD SYSEVENT previously issued for the holder. See the description of
ENQHOLD for considerations related to using enclaves for tasks that serialize
resources.

Input Register Information
If you are specifying an enclave as a holder, access register (AR) 0 and 1 must
contain an enclave token.

If this SYSEVENT is invoked with the TYPE=2 keyword, then register 1 must point
to a parameter list. The parameter list must be non-pageable and addressable via
the caller’s primary address space. To map the parameter list, use the IRAEVPL
mapping macro described in z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC).

Return and Reason Codes
When processing is complete for the ENQRLSE SYSEVENT, the last byte of
register 15 contains one of the following hexadecimal return codes:

Table 33. Return Codes for ENQRLSE

Return Code Meaning

00 Successful completion.

08 Enclave token is invalid.

Associate an Enclave with an Address Space (ENCASSOC)
Use the ENCASSOC SYSEVENT to associate an enclave and an address space so
that they are related for purposes of storage management.

SYSEVENT Macro

184 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Input Register Information
Register 1 must point to a parameter list. The parameter list must be non-pageable
and addressable via the caller’s primary address space. To map the parameter list,
use the IRAEVPL mapping macro described in z/OS MVS Data Areas, Vol 2
(DCCB-ITZYRETC).

Set the State for an Enclave (ENCSTATE)
Use the ENCSTATE SYSEVENT to set the state of an enclave to either idle or
non-idle. You must specify x’8000’ in the ASID parameter, and access registers
(AR) 0 and 1 must contain the enclave token. The enclave token must have been
obtained from the IWMECREA macro.

Input Register Information
Register 1 must point to a parameter list. The parameter list must be non-pageable
and addressable via the caller’s primary address space. To map the parameter list,
use the IRAEVPL mapping macro described in z/OS MVS Data Areas, Vol 2
(DCCB-ITZYRETC).

Access register (AR) 0 and 1 must contain the enclave token whose state you are
setting.

Query Amount of Free AUX Storage (FREEAUX)
Use the FREEAUX SYSEVENT to receive the number of free AUX storage slots
that can safely be used without causing an AUX shortage.

Output Register Information
Register 0 will contain the recommended number of free AUX storage slots.

Query a Virtual Server (QVS)
Products can use the query virtual server (QVS) interface to obtain a virtual server’s
ID and capacity. A virtual server is the “logical hardware” environment in which an
image runs. In the case of an image running in a logical partition, the virtual server
is the logical partition. In the case of an image running as a first level VM guest, the
virtual server is the first level guest. Note that the virtual server concept is not
extended to second or higher level VM guests. In those cases, the virtual server is
still considered to be the first level VM guest. For an image running in basic mode,
the virtual server is the whole machine. In other words, for a CPC in basic mode,
the logical hardware environment equals the physical hardware environment.

On a zSeries machine, customers can define a capacity limit for each logical
partition. This limit is enforced by Workload Manager based on the average CPU
usage of the logical partition. Peaks of CPU usage are allowed above the limit as
long as the average CPU usage stays below the limit.

This service gives software vendors or software providors the option of licensing
their software to a virtual server, and a provisional method of providing workload
pricing until their products can be fully License Manager–enabled.

One way a software product can use the virtual server ID and capacity query
service is to call the service when it starts. Based on the information returned, the
product can verify that it is licensed to run on the specific virtual server and that the

SYSEVENT Macro

SYSEVENT — System Event 185

|

|
|

|

|

virtual server does not have more capacity than the product is licensed for. Note
that this service does not make any of these licensing checks — it simply returns
the information to enable a software product to make the appropriate checks based
on the conditions of its license.

Along with this SYSEVENT, there is also a C interface, IWMQVS. Both forms of this
query return a QVS structure which maps the returned identification and capacity
information. The assembler mapping is provided by the macro IRAQVS, and the
C/C++ mapping is provided in IWMQVS.H. Before calling this service, the caller
must provide storage for the QVS structure and set the field QvsLen to the length of
the structure. On return, the caller can look at fields QvsVer and QvsFlags to
determine which fields have been filled in. QvsFlags contains three flags:

QvsCecValid
The physical hardware level information is valid.

QvsImgValid
The logical partition level information is valid. This flag will be off if not
running in logical partition mode.

QvsVmValid
The virtual machine information is valid. This flag will be off if not running in
a virtual machine.

The physical hardware level information is provided in the following fields:
v QvsCecManufacturerName
v QvsCecPlantofManufacture
v QvsCecMachineType
v QvsCecModelId
v QvsCecSequenceCode
v QvsCecCapacity

The logical partition level information is provided in the following fields:
v QvsImgLogicalPartitionId
v QvsImgLogicalPartitionName
v QvsImgCapacity

The virtual machine information is provided in the following fields:
v QvsVmName
v QvsVmCapacity

QvsCecCapacity, QvsImgCapacity, and QvsVmCapacity contain the maximum
service rate that theoretically could be achieved at each level. The value is in
millions of service units per hour (MSU).

QvsCecCapacity is equal to the individual CPU speed multiplied by the number of
online and offline physical CPUs.

If QvsImgValid is on, the image is in ESAME mode, and QvsVmValid is off, then
QvsImgCapacity is equal to one of the following:

v The partition’s defined capacity set via the Hardware Management Console, if
any

v The individual CPU speed multiplied by the number of online and offline logical
CPUs, if the partition is uncapped and has no defined capacity

v The capacity at the partition’s weight, if the partition is capped via the Hardware
Management Console.

SYSEVENT Macro

186 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

If QvsImgValid is on, and either the image is in ESA/390 mode or QvsVmValid is
on, then QvsImgCapacity is equal to the individual CPU speed multiplied by the
number of online and offline logical CPUs.

QvsVmCapacity is the individual CPU speed multiplied by the number of online and
offline virtual CPUs.

In all cases, the individual CPU speed in based on the MP factor for the number of
online and offline physical CPUs.

Note that the capacity of a virtual server can change dynamically. One example of a
dynamic capacity change is a CPU upgrade on demand of the underlying hardware.
A second example is a dynamic change of the defined capacity limit for a logical
partition. If an unauthorized program is interested in knowing about dynamic
capacity changes, it must poll the virtual server ID and capacity query service.
Given dynamic capacity changes are rare, a low polling rate should be sufficient.

Authorized programs interested in knowing about dynamic capacity changes can
also listen for ENF signal 61. This ENF is signaled when a change in dynamic
capacity occurs and provides the listener exit the new capacity at each level in the
hierarchy.

Return and Reason Codes
When processing is complete for the QVS SYSEVENT, the last byte of register 15
contains one of the following hexadecimal return codes:

Table 34. Return Codes for QVS

Return Code Meaning

00 Successful completion.

04 The parameter list is too small.

SYSEVENT Macro

SYSEVENT — System Event 187

SYSEVENT Macro

188 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

TCBTOKEN — Request or Translate the TTOKEN

Description
The TTOKEN is the 16-byte identifier of a task. Unlike a TCB address, each
TTOKEN is unique within the IPL; the system does not reassign this same identifier
to any other TCB.

The TCBTOKEN macro provides five mutually exclusive services depending on how
you specify the TYPE parameter:

v TYPE=TOTTOKEN gives you the TTOKEN for the task associated with a
specified TCB address.

v TYPE=TOTCB gives you the TCB address for a specified TTOKEN.

v TYPE=CURRENT gives you the TTOKEN for the current task.

v TYPE=PARENT gives you the TTOKEN for the task that attached the current
task.

v TYPE=JOBSTEP gives you the TTOKEN for the job step task.

Typical situations when you would use TYPE=TOTTOKEN are:

v When you create a data space and want to assign ownership of the data space
to a second task.

In this case, you know the TCB address for the second task, but you don’t know
its TTOKEN (for input to the DSPSERV CREATE macro). Use
TYPE=TOTTOKEN to obtain the TTOKEN.

v When you want to delete a data space you do not own.

In this case, you know the TCB address for the other task, but you don’t know its
TTOKEN (for input to the DSPSERV DELETE macro). Use TYPE=TOTTOKEN to
obtain the TTOKEN.

v When you want to know whether the owner of a data space still exists.

In this case, you know the TTOKEN for the owning task. If the system returns the
TCB address in response to the TYPE=TOTCB parameter, the task still exists.

z/OS MVS Programming: Extended Addressability Guide describes STOKENs and
TTOKENs.

Environment
The requirements for the caller are:

Minimum authorization : Problem or supervisor state, any PSW key
Dispatchable unit mode : For TOTTOKEN or TOTCB requests, the caller can be in

task or SRB mode. For CURRENT, PARENT, and JOBSTEP
requests, the caller must be in task mode.

Cross memory mode : Any
AMODE: 31-bit
ASC mode : Primary or AR
Interrupt Status : Enabled or disabled for I/O and external interrupts
Locks : For TOTTOKEN and TOTCB requests, the caller must hold

the local lock or CML lock of the specified address space.
For CURRENT, PARENT, and JOBSTEP requests, there is
no requirement.

Control parameters : Can reside in the primary address space or in an
address/data space that is addressable through a public
entry on the caller’s dispatchable unit access list (DU-AL)

© Copyright IBM Corp. 1988, 2002 189

Programming Requirements
None.

Restrictions
None.

Register Information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the macro
2-13 Unchanged
14 Used as a work register by the macro
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the macro
2-13 Unchanged
14-15 Used as work registers by the macro

Performance Implications
None.

Syntax
The standard form of the TCBTOKEN macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede TCBTOKEN.

TCBTOKEN

� One or more blanks must follow TCBTOKEN.

TYPE=TOTTOKEN Note: See the table following this diagram for information on parameter
usage with TYPE.

TYPE=TOTCB

TCBTOKEN Macro

190 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

TYPE=CURRENT
TYPE=PARENT
TYPE=JOBSTEP

,TCB=tcb addr tcb addr: RX-type address or register (2) - (12).

,TTOKEN=ttoken addr ttoken addr: RX-type address.

,ASCB=ascb addr ascb addr: RX-type address or register (2) - (12).
,STOKEN=stoken addr stoken addr: RX-type address.

Default : Home address space.

,RELATED=value value: Any valid macro parameter specification.

The following table shows how the parameters may be specified with the TYPE
keywords.

Parameters TYPE=
TOTTOKEN

TYPE=
TOTCB

TYPE=
CURRENT

TYPE=
PARENT

TYPE=
JOBSTEP

TCB required required not valid not valid not valid

TTOKEN required required required required required

ASCB optional optional not valid not valid not valid

STOKEN optional not valid not valid not valid not valid

RELATED optional optional optional optional optional

Parameters
The parameters are explained as follows:

TYPE=TOTTOKEN
TYPE=TOTCB
TYPE=CURRENT
TYPE=PARENT
TYPE=JOBSTEP

Specifies the type of TCB information requested, as follows:

TOTTOKEN The system returns the TTOKEN of the task whose TCB
address is specified in the TCB parameter. The TTOKEN is
returned at the address specified by the TTOKEN parameter.

TOTCB The system returns the TCB address for the task whose
TTOKEN is specified in the TTOKEN parameter. The TCB
address is returned at the address specified by the TCB
parameter.

CURRENT The system returns the TTOKEN of the currently active task.
The TTOKEN is returned at the address specified by the
TTOKEN parameter.

PARENT The system returns the TTOKEN of the task that attached the
currently active task. The TTOKEN is returned at the address
specified by the TTOKEN parameter.

JOBSTEP The system returns the TTOKEN of the job step task for the

TCBTOKEN Macro

TCBTOKEN — Request or Translate the TTOKEN 191

address space in which the currently active task is running. The
TTOKEN is returned at the address specified by the TTOKEN
parameter.

,TCB=tcb addr
Specifies the TCB address. For TYPE=TOTTOKEN, tcb addr contains the TCB
address that is to be translated to a TTOKEN. For TYPE=TOTCB, tcb addr
points to a fullword where the system returns the TCB address for the task
whose TTOKEN is specified by the TTOKEN parameter.

,TTOKEN=ttoken addr
Specifies the address of the 16-byte TTOKEN. For TYPE=TOTTOKEN,
TYPE=CURRENT, TYPE=PARENT, and TYPE=JOBSTEP, ttoken addr is the
address at which the TTOKEN associated with the specified TCB is returned.
For TYPE=TOTCB, ttoken addr is the address of the TTOKEN for the task
whose TCB address is to be obtained.

,ASCB=ascb addr
,STOKEN=stoken addr

Identifies the address space of the TCB. ASCB specifies the address of the
fullword containing the ASCB address. STOKEN specifies the address of the
8-byte STOKEN that identifies the address space in which the TCB resides. If
you do not specify either ASCB or STOKEN, TCBTOKEN uses the home
address space by default.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and may be any valid
coding values.

Abend Codes
None.

Return Codes
When TCBTOKEN returns control, register 15 contains one of the following
hexadecimal return codes:

Table 35. Return Codes for the TCBTOKEN Macro

Return Code Meaning and Action

00 Meaning : TCBTOKEN services completed successfully.

Action : None.

04 Meaning : The input STOKEN or TTOKEN does not represent a valid
address space.

Action : Ensure that you specify a valid token on the STOKEN or TTOKEN
keywords.

08 Meaning : No local lock was held.

Action : Obtain the local lock before issuing TCBTOKEN.

0C Meaning : A local lock was held, but not the local lock of the associated
address space.

Action : Obtain the correct local lock before issuing TCBTOKEN.

10 Meaning : The TCB could not be referenced.

Action : Ensure that the input TCB address specified on the TCB keyword is
valid.

TCBTOKEN Macro

192 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 35. Return Codes for the TCBTOKEN Macro (continued)

Return Code Meaning and Action

14 Meaning : The TCB did not pass the acronym check.

Action : Ensure that the input TCB address specified on the TCB keyword is
valid.

18 Meaning : The TCB has ended.

Action : None required.

1C Meaning : The TCB associated with the TTOKEN represents a different task
than when the TTOKEN was obtained.

Action : None required.

20 Meaning : An unexpected error occurred.

Action : Reissue the TCBTOKEN macro.

24 Meaning : The contents of access register 1, used to address the parameter
list, were not valid.

Action : Either change your program to run in primary mode or set access
register 1 to zero.

28 Meaning : The parameter list is not valid.

Action : Ensure that the parameter list address is valid and addressable in
the calling program’s key.

2C Meaning : The ASCB address is the address of the wait ASCB. The system
cannot obtain the TTOKEN.

Action : Specify an ASCB address which is not the wait ASCB.

30 Meaning : The task is scheduled for termination, but has not yet terminated.

Action : None required.

34 Meaning : The caller is not running in task mode. This return code is valid
only for TYPE=CURRENT, TYPE=PARENT, or TYPE=JOBSTEP.

Action : Change your program to run in task mode.

Note: Return codes 04, 08, 0C, 1C, and 2C are valid only with TYPE=TOTTOKEN
and TYPE=TOTCB.

Example 1
Obtain the TTOKEN for the task whose TCB address is specified in THEIR_TCB.
The task resides in the address space whose ASCB address is specified in register
4. Store the returned TTOKEN in THEIR_TOKEN.
TCBTOKEN TYPE=TOTTOKEN,TCB=THEIR_TCB,TTOKEN=THEIR_TTOKEN,ASCB=(4)

Example 2
Obtain the TTOKEN for the currently active task and store it in
CURRENT_TTOKEN.
TCBTOKEN TYPE=CURRENT,TTOKEN=CURRENT_TTOKEN

Example 3
Obtain the TCB address of the job step TCB and store it in JOBSTEP_TCB_ADDR.
TCBTOKEN TYPE=JOBSTEP,TTOKEN=JOBSTEP_TTOKEN
TCBTOKEN TYPE=TOTCB,TTOKEN=JOBSTEP_TTOKEN,TCB=JOBSTEP_TCB_ADDR

TCBTOKEN Macro

TCBTOKEN — Request or Translate the TTOKEN 193

TCBTOKEN—List Form
Use the list form of the TCBTOKEN macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage that the execute form of the macro uses to store the
parameters.

Syntax
The list form of the TCBTOKEN macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede TCBTOKEN.

TCBTOKEN

� One or more blanks must follow TCBTOKEN.

,RELATED=value value: Any valid macro parameter specification.

,MF=L

Parameters
The parameters are explained below:

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and may be any valid
coding values.

,MF=L
Specifies the list form of the TCBTOKEN macro.

TCBTOKEN—Execute Form
Use the execute form of the TCBTOKEN macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the TCBTOKEN macro is written as follows:

name name: Symbol. Begin name in column 1.

TCBTOKEN Macro

194 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

� One or more blanks must precede TCBTOKEN.

TCBTOKEN

� One or more blanks must follow TCBTOKEN.

TYPE=TOTTOKEN Note: See the table following this diagram for information on parameter
usage with TYPE.

TYPE=TOTCB
TYPE=CURRENT
TYPE=PARENT
TYPE=JOBSTEP

,TCB=tcb addr tcb addr: RX-type address or register (2) - (12).

,TTOKEN=ttoken addr ttoken addr: RX-type address.

,ASCB=ascb addr ascb addr: RX-type address or register (2) - (12).
,STOKEN=stoken addr stoken addr: RX-type address.

Default : Home address space.

,RELATED=value value: Any valid macro parameter specification.

,MF=(E,cntl addr) cntl addr: RX-type address or register (1) - (12).

Parameters
The parameters are the same as those for the standard form of the TCBTOKEN
macro with the following addition:

,MF=(E,cntl addr)
Specifies the execute form of the TCBTOKEN macro. This form uses a remote
parameter list. The cntl addr specifies the address of the remote parameter list
that the list form of the macro generates.

TCBTOKEN Macro

TCBTOKEN — Request or Translate the TTOKEN 195

TCBTOKEN Macro

196 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

TCTL — Transfer Control from an SRB Routine

Description
The TCTL (transfer control) macro allows an SRB routine to exit from its processing
and to pass control directly to a task.

Environment
Requirements for the caller are:

Minimum authorization : Supervisor state and any PSW key
Dispatchable unit mode : SRB
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled for I/O or external interrupts
Locks : None held
Control parameters : Must be in the caller’s primary address space

Programming Requirements
The caller must include the following mapping macros:
v IHAPSA
v CVT with DSECT=YES

Restrictions
None.

Input Register Information
If you are using the default for the TCB parameter, on input to the TCTL macro,
general purpose register (GPR) 4 must contain the address of the TCB.

Output Register Information
The system does not return to the caller after invoking this macro, so register
contents on exit from the macro are not applicable.

Performance Implications
None.

Syntax
The TCTL macro is coded as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede TCTL.

TCTL

� One or more blanks must follow TCTL.

© Copyright IBM Corp. 1988, 2002 197

TCB=(4) Default : Register 4 contains TCB address.
TCB=tcbaddr tcbaddr: A-type address or registers (2) - (12).

Parameters
The parameters are explained as follows:

TCB=(4)
TCB=tcbaddr

Specifies the task designated for dispatching. Register 4 is the default; if you
use the default, you must ensure that register 4 contains the appropriate TCB
address.

Note: The TCB resides in storage below 16 megabytes.

ABEND Codes
070

See z/OS MVS System Codes for an explanation and programmer responses for
this code.

Return and Reason Codes
The system does not return to the caller after this macro has been invoked, so
return codes from the macro are not applicable.

Example
From SRB mode processing, terminate the SRB and give control to the task
specified in register 4.
TCTL TCB=(4)

TCTL Macro

198 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

TESTAUTH — Test Authorization of Caller

Description
The TESTAUTH macro is used on behalf of a privileged or sensitive function to
verify that its caller is appropriately authorized.

TESTAUTH supports the authorized program facility (APF) - a facility that permits
the identification of programs that are authorized to use restricted functions. In
addition, TESTAUTH provides the capability for testing for system key 0-7 and
supervisor state. An EUT FRR may not be in force for a caller using BRANCH=NO.

Environment
The requirements for the caller are:

BRANCH=NO entry

Minimum authorization : Problem or supervisor state, any key
Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
Asc mode : Primary
Interrupt status : No requirement
Locks : No requirement
Control Parameters : Must be in primary address space

Programming Requirements
None.

Input Register Information
Before issuing the TESTAUTH macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

© Copyright IBM Corp. 1988, 2002 199

BRANCH=YES entry

Minimum authorization : Supervisor state, any key
Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
Asc mode : Primary
Interrupt status : No requirement
Locks : Local lock held
Control Parameters : Must be in primary address space

Programming Requirements
Callers must include the CVT mapping macro.

Input Register Information
Before issuing the TESTAUTH macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-3 Used as work registers by the system
4-13 Unchanged
14 Used as a work register by the system
15 Return Code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Performance Implications
None.

Syntax
The TESTAUTH macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede TESTAUTH.

TESTAUTH

� One or more blanks must follow TESTAUTH.

TESTAUTH Macro

200 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

FCTN=fctn fctn: Decimal digit 0 or 1 or register (2) - (12).
Default : FCTN=0 if STATE or KEY is specified. Otherwise, the default is
FCTN=1.

,STATE=NO Default : STATE=NO
,STATE=YES

,KEY=NO Default : KEY=NO
,KEY=YES

,RBLEVEL=2 Default : RBLEVEL=2
,RBLEVEL=1 RBLEVEL is used only if KEY and/or STATE are specified; otherwise

RBLEVEL is ignored.

,BRANCH=NO Default : BRANCH=NO
,BRANCH=YES

Parameters
The parameters are explained as follows:

FCTN=fctn
Specifies the authorization of a program to be checked through APF.

FCTN=0 specifies that APF-authorization is not checked.

FCTN=1 specifies that APF-authorization is checked.

,STATE=NO
,STATE=YES

Specifies whether or not (YES or NO) a check is to be made for
supervisor/problem program state. (Supervisor state is authorized, problem
program state is not authorized.)

,KEY=NO
,KEY=YES

Specifies whether or not (YES or NO) a check is to be made of the protection
keys. (Protection keys 0-7 are authorized, protection keys 8-15 are not
authorized.)

Note: TESTAUTH is used to test one or more of three conditions: FCTN, STATE,
or KEY. If any of the requested conditions are tested favorably, a return code
of zero is returned in register 15. If all of the requested conditions are tested
unfavorably, the return code is set to 4.

,RBLEVEL=2
,RBLEVEL=1

Specifies whether the TESTAUTH caller is a type 2, 3, or 4 SVC (RBLEVEL=2)
or a type 1 SVC (RBLEVEL=1). If the TESTAUTH caller is not an SVC, specify
RBLEVEL=1. Specify RBLEVEL only if you also specify KEY and/or STATE;
otherwise RBLEVEL is ignored.

,BRANCH=NO

TESTAUTH Macro

TESTAUTH — Test Authorization of Caller 201

,BRANCH=YES
Specifies a branch entry (YES) or an SVC entry (NO). If BRANCH=YES is
specified, registers 2 and 3 are modified by the TESTAUTH routine. Only SVC
routines can use BRANCH=YES.

ABEND Codes
None.

Return Codes
When control is returned, register 15 contains one of the following hexadecimal
return codes:

Table 36. Return Codes for the SAMPLE Macro

Return Code Meaning and Action

00 Meaning : Task is authorized.

Action : None.

04 Meaning : Task is not authorized.

Action : None.

Example 1
Test jobstep for APF authorization.
TESTAUTH FCTN=1

Example 2
Test for APF authorization and supervisor state and do not check protection keys.
TESTAUTH STATE=YES,KEY=NO,FCTN=1

TESTAUTH Macro

202 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

TIMEUSED — Obtain Accumulated CPU or Vector Time

Description
The TIMEUSED macro returns an 8-byte hexadecimal number in a doubleword
storage area that you specify. The number is the total CPU or vector time used by
the current TCB or SRB up until you issue the macro. The format of the number is
time-of-day (TOD) clock or microseconds time format.

If you use the SRBSTAT save and restore services, the number includes the
interval between dispatch and save and between restore and TIMEUSED. It does
not include the interval between save and restore. If you have not yet issued
restore, the number includes only the interval between save and TIMEUSED.

TIMEUSED is also documented in the z/OS MVS Programming: Assembler
Services Reference ABE-HSP, but without the LINKAGE=BRANCH parameter. That
parameter is available only to authorized callers.

Environment
The requirements for the caller are:

Minimum authorization : Supervisor state and PSW key 0 when you specify
LINKAGE=BRANCH. Supervisor or problem state and any
PSW key when you specify LINKAGE=SYSTEM.

Dispatchable unit mode : Task or SRB when LINKAGE=BRANCH. Task when
LINKAGE=SYSTEM.

Cross memory mode : PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 31- or 64-bit
ASC mode : Primary or secondary when LINKAGE=BRANCH. Primary or

AR (access register) when LINKAGE=SYSTEM.
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the caller’s dispatchable unit access list (DU-AL)

Programming Requirements
For information about programs in 64-bit addressing mode (AMODE 64), see z/OS
MVS Programming: Extended Addressability Guide.

Restrictions
None.

Input Register Information
Register 13 must contain the address of an 18-word save area when you specify
LINKAGE=BRANCH. You can provide the address through the use of standard
linkage conventions.

Output Register Information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were

© Copyright IBM Corp. 1988, 2002 203

before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the macro
15 Return code

Performance Implications
None.

Syntax
The TIMEUSED macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede TIMEUSED.

TIMEUSED

� One or more blanks must follow TIMEUSED.

STORADR=addr addr: RX-type address or register (2)-(12).

,LINKAGE=SYSTEM Default : LINKAGE=BRANCH
,LINKAGE=BRANCH

,RELATED=value value: Any valid macro parameter specification

,CPU=TOD Default : CPU=TOD
,CPU=MIC
,VECTOR=TOD
,VECTOR=MIC

Parameters
The parameters are explained as follows:

STORADR=addr
Specifies the 31-bit address of a doubleword area where the accumulated CPU
or vector time is returned. The time interval is represented as an unsigned
64-bit binary number. If you specify CPU=TOD or VECTOR=TOD, bit 51 is the

TIMEUSED Macro

204 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

low-order bit of the interval value and equivalent to 1 microsecond. If you
specify CPU=MIC or VECTOR=MIC, bit 63 is the low-order bit of the interval
value and equivalent to 1 microsecond.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of linkage used in TIMEUSED processing.
LINKAGE=BRANCH indicates branch entry. You may specify or default to
LINKAGE=BRANCH if you are a key zero supervisor state program running
under a TCB or SRB. LINKAGE=SYSTEM indicates the linkage is by
nonbranch entry.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and may be any valid
coding values.

,CPU=TOD
,CPU=MIC
,VECTOR=TOD
,VECTOR=MIC

Specifies that TIMEUSED should return the total CPU or vector time in either
TOD clock format (CPU=TOD or VECTOR=TOD) or in microseconds
(CPU=MIC or VECTOR=MIC). You may specify CPU=MIC or VECTOR only if
LINKAGE=SYSTEM.

Return Codes
When control returns to the caller, GPR 15 contains one of the following
hexadecimal return codes.

Table 37. Return Codes for the TIMEUSED Macro

Return Code Meaning and Action

00 Meaning : The service completed successfully.

Action : None.

08 Meaning : Unexpected error

Action : Retry the request.

Example 1
Using the unauthorized TIMEUSED service, request the total CPU time in TOD
clock format to be stored at the address in register 2.
TIMEUSED STORADR=(2),LINKAGE=SYSTEM,CPU=TOD

Example 2
Using the unauthorized TIMEUSED service in task mode, request the total vector
time in microseconds to be stored at the address in register 2.
TIMEUSED STORADR=(2),LINKAGE=SYSTEM,VECTOR=MIC

Example 3
Using the authorized TIMEUSED service, request the total CPU time in TOD clock
format to be stored at the address in register 2.
TIMEUSED STORADR=(2),LINKAGE=BRANCH

TIMEUSED Macro

TIMEUSED — Obtain Accumulated CPU or Vector Time 205

TIMEUSED Macro

206 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

T6EXIT — Type 6 Exit

Description
The T6EXIT macro returns control from a type 6 SVC. This exit macro can only be
used in a type 6 SVC routine.

Environment
The requirements for the caller are:

Minimum authorization : Supervisor state and PSW key 0
Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Disabled for I/O and external interrupts
Locks : No locks held
Control parameters : None

Programming Requirements
The caller must include the CVT mapping macro with DSECT=YES specified.

Restrictions
None.

Input Register Information
On input, general purpose register (GPR) 1 must point to a service request block
(SRB) if RETURN=SRB is specified.

Output Register Information
For RETURN=CALLER, registers 0, 1, and 15 are returned from the type 6 SVC
routine to the calling program (the issuer of the SVC). For RETURN=DISPATCH
and RETURN=SRB, no registers are returned to the calling program.

Performance Implications
None.

Syntax
The T6EXIT macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede T6EXIT.

T6EXIT

� One or more blanks must follow T6EXIT.

© Copyright IBM Corp. 1988, 2002 207

RETURN=CALLER Default : RETURN=CALLER

RETURN=DISPATCH

RETURN=SRB

Parameter
The explanation of the RETURN parameter is as follows:

RETURN
Specifies how the type 6 SVC has chosen to exit, which is one of the following:

v CALLER specifies that the return is directly to the caller or issuer of the SVC.
The contents of GPRs 0, 1, and 15 at the time of the T6EXIT are returned to
the issuer of the SVC. CALLER is the default return option.

v DISPATCH specifies that the return should be to the system to dispatch other
work. This function is for the use of routines that have suspended the current
task. When the task resumes, the issuer of the type 6 SVC receives control
at the instruction after the SVC.

v SRB specifies that the system should immediately dispatch an SRB. This
SRB must:

– Be initialized by the type 6 SVC.

– Be pointed to by register 1.

– Run in the same address space as the SVC. The SRB has the same
format as an SRB dispatched through the SCHEDULE macro.

ABEND Codes
None.

Return and Reason Codes
None.

Example
Terminate type 6 SVC processing and return control from the type 6 SVC to the
caller of the SVC.
T6EXIT RETURN=CALLER

T6EXIT Macro

208 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

UCBINFO — Return Information from a UCB

Description
Use the UCBINFO macro to obtain information from a unit control block (UCB) for a
specified device. The UCBINFO macro provides the following options:

DEVCOUNT Returns a count of the UCBs for a device class or device group.

DEVINFO Returns information about a device, specifically, why the device is
offline. For the base UCB of a &pav., DEVINFO returns the number
of alias UCBs that are defined and the number that are usable.

PATHINFO Returns information about the device path and type of channel path
associated with the device.

PATHMAP Returns information about the device path.

PRFXDATA Obtains a copy of the UCB prefix extension segment.

PAVINFO Returns information about the alias UCBs for a parallel access
volume.

The options of the UCBINFO macro have the same environmental specifications,
programming requirements, restrictions, register information, and performance
implications described below, except where noted in the explanations of each
option.

Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key.

For LINKAGE=BRANCH, all of the following:
v Supervisor state with key 0
v 31-bit addressing mode
v Primary ASC mode
v Parameter list and any data areas it points to must be in

fixed storage or, if the caller is disabled, in disabled
reference (DREF) storage.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller’s
dispatchable unit access list (DU-AL).

Programming Requirements
Before issuing the UCBINFO macro, you can issue the UCBSCAN macro to obtain
either the UCBPTR or the device number, which you must provide as input to
UCBINFO. Authorized callers must serialize (such as through pinning) the device
against dynamic deletions when specifying any of the following:
v DEVINFO with the UCBPTR parameter

© Copyright IBM Corp. 1988, 2002 209

v PATHINFO with the UCBPTR parameter
v PATHMAP with the UCB pointer in the MAPAREA field.
v PRFXDATA with the UCBPTR parameter
v PAVINFO with the UCBPTR parameter

See z/OS MVS Programming: Authorized Assembler Services Guide for information
about accessing and pinning UCBs.

The caller must include the appropriate mapping macro for the UCBINFO option
being used:

Option Mapping Macro
DEVCOUNT None
DEVINFO IOSDDEVI mapping macro
PATHINFO IOSDPATH mapping macro
PATHMAP IOSDMAP mapping macro
PRFXDATA IOSDUPI mapping macro
PAVINFO IOSDPAVA mapping macro

See z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC).

Restrictions
None.

Input Register Information
Before issuing the UCBINFO macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 A reason code; otherwise, used as a work register by the system
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 A return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Performance Implications
None.

UCBINFO DEVCOUNT
Use the UCBINFO DEVCOUNT macro to obtain a count of the UCBs for a device
class.

UCBINFO Macro

210 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Syntax
The standard form of the DEVCOUNT option of the UCBINFO macro is written as
follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

DEVCOUNT

,COUNT=count addr count addr: RS-type address or register (2) - (12).

,GROUP=DEVICELASS

,DEVCLASS=ALL Default: ALL
,DEVCLASS=CHAR
,DEVCLASS=COMM
,DEVCLASS=CTC
,DEVCLASS=DASD
,DEVCLASS=DISP
,DEVCLASS=TAPE
,DEVCLASS=UREC

,GROUP=OTHER

,DEVGROUP=PAVBASE Default: PAVBASE
,DEVGROUP=PAVALIAS

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

UCBINFO Macro

UCBINFO — Return Information from a UCB 211

DEVCOUNT
Specifies that the system is to return a count of the UCBs.

,COUNT=count addr
Specifies the address of the fullword field that is to receive the count.

,GROUP=DEVICECLASS
GROUP specifies the grouping upon which the UCB count is based.

DEVICECLASS indicates that the UCB count is based on device classes.

,DEVICECLASS=ALL|CHAR|COMM|CTC|DASD|DISP|TAPE|UREC
Specifies the device class for which the corresponding UCBs are to be
counted:
ALL Counts UCBs for all device classes
CHAR Counts UCBs for character reader device class
COMM

Counts UCBs for communications device class
CTC Counts UCBs for channel to channel device class
DASD Counts UCBs for direct access device class
DISP Counts UCBs for display device class
TAPE Counts UCBs for tape device class
UREC Counts UCBs for unit record device class

,GROUP=OTHER
GROUP specifies the grouping upon which the UCB count is based.

OTHER indicates that the UCB count is not based on device classes.

,DEVGROUP=PAVBASE
,DEVGROUP=PAVALIAS

Specifies the device group for which the corresponding UCBs are to be
counted.

v PAVBASE , counts UCBs for Parallel Access Volume (PAV) base UCBs.

v PAVALIAS , counts UCBs for Parallel Access Volume (PAV) alias UCBs.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP . If the I/O configuration token that is current when
UCBINFO is invoked does not match the token whose address is supplied here,
the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of

UCBINFO Macro

212 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code , specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2.

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the return
code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and Reason Codes
When the UCBINFO DEVCOUNT macro returns control to your program, GPR 15
(or retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or
rsncode addr, if you coded RSNCODE) contains a reason code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: The DEVCOUNT function completed successfully.

Action: None.

08 01 Meaning: Program error. A caller in AR mode specified an
ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. The system could not access the
caller’s parameter list.

Action: Check to see if your program inadvertently overlaid
the parameter list generated by the macro.

08 03 Meaning: Program error. The UCB address provided by the
caller does not represent a valid UCB.

Action: Correct the UCB address and reissue the macro.

08 05 Meaning: Program error. An error occurred when the
system referenced the caller-supplied area specified in the
IOCTOKEN parameter. This reason code is valid only for
callers using the IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

UCBINFO Macro

UCBINFO — Return Information from a UCB 213

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

0C None Meaning: Environmental error. The I/O configuration token
supplied through the IOCTOKEN parameter is not current.
This return code is valid only for callers using the
IOCTOKEN parameter.

Action: Obtain the current I/O configuration token by
issuing an IOCINFO macro or by setting the input
IOCTOKEN parameter in the UCBINFO macro to zero.

20 None Meaning: System error. An unexpected error occurred.

Action: Supply the return code to the appropriate IBM
support personnel.

Example
To invoke UCBINFO to return a count of all DASD devices, code:

UCBINFO DEVCOUNT,COUNT=CTAREA,DEVCLASS=DASD, X
RETCODE=INFORTCD,RSNCODE=RSNCD
.
.
.

DS 0D
CTAREA DS F
INFORTCD DS F
RSNCD DS F

UCBINFO DEVCOUNT—List Form
Use the list form of the DEVCOUNT option of the UCBINFO macro together with
the execute form for applications that require reentrant code. The list form of the
macro defines an area of storage that the execute form uses to contain the
parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative List Form Macros” on page 12 for further information.

The list form of the DEVCOUNT option of the UCBINFO macro is written as follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

UCBINFO Macro

214 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

MF=(L,list addr) list addr: RX-type address
MF=(L,list addr, attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of UCBINFO DEVCOUNT
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO DEVCOUNT macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a doubleword
boundary.

UCBINFO DEVCOUNT—Execute Form
Use the execute form of the DEVCOUNT option of the UCBINFO macro together
with the list form of the macro for applications that require reentrant code. The
execute form of the macro stores the parameters into the storage area defined by
the list form.

The execute form of the DEVCOUNT option of the UCBINFO macro is written as
follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

DEVCOUNT

,COUNT=count addr count addr: RS-type address or register (2) - (12).

,GROUP=DEVICELASS

,DEVCLASS=ALL Default: ALL

UCBINFO Macro

UCBINFO — Return Information from a UCB 215

,DEVCLASS=CHAR
,DEVCLASS=COMM
,DEVCLASS=CTC
,DEVCLASS=DASD
,DEVCLASS=DISP
,DEVCLASS=TAPE
,DEVCLASS=UREC

,GROUP=OTHER

,DEVGROUP=PAVBASE Default: PAVBASE

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of UCBINFO DEVCOUNT
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO DEVCOUNT macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO DEVINFO
Use the UCBINFO DEVINFO macro to obtain information about a device,
specifically, reasons why the device is offline.

Syntax
The standard form of the DEVINFO option of the UCBINFO macro is written as
follows:

UCBINFO Macro

216 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

DEVINFO

,DEVIAREA=deviarea addr deviarea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,UCBPTR=ucbptr ucbptr: RS-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

DEVINFO
Specifies that the system is to return information about the specified UCB.

,DEVIAREA=deviarea addr
Specifies the address of a required 256-byte output field into which the system
is to return information about the specified UCB. This field is mapped by the
mapping macro IOSDDEVI.

,DEVN=devn addr
Specifies the address of a halfword that contains, in binary form, the device
number of the device. The DEVN and UCBPTR parameters are mutually
exclusive.

,UCBPTR=ucbptr
Specifies that address of a fullword that contains the address of the UCB
common segment. The DEVN and UCBPTR parameters are mutually exclusive.

UCBINFO Macro

UCBINFO — Return Information from a UCB 217

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when
UCBINFO is invoked does not match the token whose address is supplied here,
the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code , specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the return
code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and Reason Codes
When the UCBINFO DEVINFO macro returns control to your program, GPR 15 (or
retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or
rsncode addr, if you coded RSNCODE) contains a reason code.

UCBINFO Macro

218 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: The DEVINFO function completed
successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the
device number specified in the DEVN parameter.

Action: Correct the device number and reissue
the macro.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller’s parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 03 Meaning: Program error.

Action: Correct the UCB address and reissue the
macro.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 09 Meaning: Program error. An error occurred when
the system attempted to reference the area
specified by the DEVIAREA parameter.

Action: Correct the address specified on the
DEVIAREA parameter and reissue the macro.

0C None Meaning: Environmental error. The I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the IOCTOKEN
parameter.

Action: Obtain the current I/O configuration token
by issuing an IOCINFO macro or by setting the
input IOCTOKEN parameter in the UCBINFO
macro to zero.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

28 None Meaning: Program error. The device number or
UCB address provided by the caller represents an
alias UCB of a parallel access volume. For
information about a parallel access volume, the
caller must specify the base device number or
base UCB.

Action: Correct the DEVN or UCBPTR parameter
and reissue the macro.

UCBINFO Macro

UCBINFO — Return Information from a UCB 219

Example
To invoke UCBINFO to return device information, code:

UCBINFO DEVINFO,DEVIAREA=INFOAREA,DEVN=DEVNUM, X
RETCODE=INFORTCD
.
.
.

DS 0D
INFOAREA DS CL256
INFORTCD DS F
DEVNUM DS H

UCBINFO DEVINFO—List Form
Use the list form of the DEVINFO option of the UCBINFO macro together with the
execute form for applications that require reentrant code. The list form of the macro
defines an area of storage that the execute form uses to contain the parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative List Form Macros” on page 12 for further information.

The list form of the DEVINFO option of the UCBINFO macro is written as follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address
MF=(L,list addr, attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of UCBINFO DEVINFO with
the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)

UCBINFO Macro

220 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

MF=(L,list addr,0D)
Specifies the list form of the UCBINFO DEVINFO macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a doubleword
boundary.

UCBINFO DEVINFO—Execute Form
Use the execute form of the DEVINFO option of the UCBINFO macro together with
the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list
form.

The execute form of the DEVINFO option of the UCBINFO macro is written as
follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

DEVINFO

,DEVIAREA=deviarea addr deviarea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
,UCBPTR=ucbptr ucbptr: RS-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

UCBINFO Macro

UCBINFO — Return Information from a UCB 221

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of UCBINFO DEVINFO with
the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO DEVINFO macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO PATHINFO
Use the UCBINFO PATHINFO macro to obtain information about the device path
and type of channel path associated with the device.

Syntax
The standard form of the PATHINFO option of the UCBINFO macro is written as
follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PATHINFO

,PATHAREA=patharea addr patharea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
,UCBPTR=ucbptr ucbptr: RS-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION

UCBINFO Macro

222 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

PATHINFO
Specifies that the system is to return information about the device path and type
of channel path for the specified UCB.

,PATHAREA= patharea addr
Specifies the address of the required 256-byte output field into which the
system is to return information about the device path and type of channel path
for the specified UCB. This field is mapped by the mapping macro IOSDPATH.

,DEVN=devn addr
Specifies the address of a halfword that contains, in binary form, the device
number of the device.

,UCBPTR=ucbptr
Specifies the address of a fullword that contains the address of the UCB
common segment. The caller can obtain the address of the UCB common
segment by a UCBPTR parameter on a UCBLOOK macro.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when
UCBINFO is invoked does not match the token whose address is supplied here,
the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

UCBINFO Macro

UCBINFO — Return Information from a UCB 223

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code , specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the return
code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and Reason Codes
When the UCBINFO PATHINFO macro returns control to your program, GPR 15 (or
retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or
rsncode addr, if you coded RSNCODE) contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: The PATHINFO function completed
successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the
device number specified in the DEVN parameter.

Action: Correct the device number and reissue
the macro.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller’s parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

UCBINFO Macro

224 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

08 03 Meaning: Program error.

The UCB address provided by the caller does not
represent a valid UCB.

Action: Correct the UCB address and reissue the
macro.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 08 Meaning: Program error. An error occurred when
the system attempted to reference the area
specified by the PATHAREA parameter.

Action: Correct the address specified on the
PATHAREA parameter and reissue the macro.

0C None Meaning: Environmental error. The I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the IOCTOKEN
parameter.

Action: Obtain the current I/O configuration token
by issuing an IOCINFO macro or by setting the
input IOCTOKEN parameter in the UCBINFO
macro to zero.

18 04 Meaning: System error. The subchannel is in
permanent error and cannot be accessed.

Action: Supply the return and reason codes to
the appropriate IBM support personnel.

18 08 Meaning: Environmental error. The UCB is not
connected to a subchannel.

Action: Verify that there is a device at the device
number associated with the subchannel, and
reissue the macro.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

Example
To invoke UCBINFO to return device path and type of channel path information,
code:

UCBINFO PATHINFO,PATHAREA=INFOAREA,DEVN=DEVNUM, X
RETCODE=INFORTCD
.
.
.

DS 0D
INFOAREA DS CL256
INFORTCD DS F
DEVNUM DS H

UCBINFO Macro

UCBINFO — Return Information from a UCB 225

UCBINFO PATHINFO—List Form
Use the list form of the PATHINFO option of the UCBINFO macro together with the
execute form for applications that require reentrant code. The list form of the macro
defines an area of storage that the execute form uses to contain the parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative List Form Macros” on page 12 for further information.

The list form of the PATHINFO option of the UCBINFO macro is written as follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address
MF=(L,list addr, attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of UCBINFO PATHINFO
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO PATHINFO macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a doubleword
boundary.

UCBINFO Macro

226 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

UCBINFO PATHINFO—Execute Form
Use the execute form of the PATHINFO option of the UCBINFO macro together with
the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list
form.

The execute form of the PATHINFO option of the UCBINFO macro is written as
follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PATHINFO

,PATHAREA=patharea addr patharea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
,UCBPTR=ucbptr ucbptr: RS-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of UCBINFO PATHINFO
with the following exceptions:

,MF=(E,list addr)

UCBINFO Macro

UCBINFO — Return Information from a UCB 227

,MF=(E,list addr,COMPLETE)
Specifies the execute form of the UCBINFO PATHINFO macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO PATHMAP
Use the UCBINFO PATHMAP macro to obtain information about the device path.

Syntax
The standard form of the PATHMAP option of the UCBINFO macro is written as
follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PATHMAP

,MAPAREA=maparea addr maparea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
,DEVN=NONE Default : NONE

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

UCBINFO Macro

228 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

PATHMAP
Specifies that the system is to return information about the device path for the
specified UCB.

,MAPAREA= maparea addr
Specifies a required 40-byte field into which the system is to return information
about the device path for the specified UCB. This field is mapped by the
mapping macro IOSDMAP.

,DEVN=devn addr
,DEVN=NONE

Specifies the address of a halfword that contains, in binary form, the device
number of the device.

If the caller does not specify an address on the DEVN parameter, or specifies
DEVN=NONE, the caller must place the address of the UCB common segment
into the fullword field within the MAPAREA DSECT that is assigned the name
MAPUCB by mapping macro IOSDMAP. See z/OS MVS Programming:
Authorized Assembler Services Guide for information about using UCBSCAN to
obtain the address of the UCB.

If the caller codes the DEVN parameter, the MAPUCB field contains
hexadecimal zeros when control returns to the caller.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when
UCBINFO is invoked does not match the token whose address is supplied here,
the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that

UCBINFO Macro

UCBINFO — Return Information from a UCB 229

the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code , specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the return
code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and Reason Codes
When the UCBINFO PATHMAP macro returns control to your program, GPR 15 (or
retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or
rsncode addr, if you coded RSNCODE) contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: The PATHMAP function completed
successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the
device number specified in the DEVN parameter.

Action: Correct the device number and reissue
the macro.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller’s parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 03 Meaning: Program error.

The UCB address provided by the caller does not
represent a valid UCB.

Action: Correct the UCB address and reissue the
macro.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

UCBINFO Macro

230 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

08 06 Meaning: Program error. An error occurred when
the system attempted to reference the area
specified by the MAPAREA parameter.

Action: Correct the address specified for
MAPAREA and reissue the macro.

0C None Meaning: Environmental error. The I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the IOCTOKEN
parameter.

Action: Obtain the current I/O configuration token
by issuing an IOCINFO macro or by setting the
input IOCTOKEN parameter in the UCBINFO
macro to zero.

10 04 Meaning: System error. The subchannel is in
permanent error and cannot be accessed.

Action: Supply the return and reason code to the
appropriate IBM support personnel.

10 08 Meaning: Environmental error. The UCB is not
connected to a subchannel.

Action: Correct the UCB address supplied, and
reissue the macro.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

Example
To invoke UCBINFO to return device path information, code:

UCBINFO PATHMAP,MAPAREA=INFOAREA,DEVN=DEVNUM, X
RETCODE=INFORTCD
.
.
.

DS 0D
INFOAREA DS CL256
INFORTCD DS F
DEVNUM DS H

UCBINFO PATHMAP—List Form
Use the list form of the PATHMAP option of the UCBINFO macro together with the
execute form for applications that require reentrant code. The list form of the macro
defines an area of storage that the execute form uses to contain the parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative List Form Macros” on page 12 for further information.

The list form of the PATHMAP option of the UCBINFO macro is written as follows:

UCBINFO Macro

UCBINFO — Return Information from a UCB 231

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address
MF=(L,list addr, attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of UCBINFO PATHMAP with
the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO PATHMAP macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a doubleword
boundary.

UCBINFO PATHMAP—Execute Form
Use the execute form of the PATHMAP option of the UCBINFO macro together with
the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list
form.

The execute form of the PATHMAP option of the UCBINFO macro is written as
follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO Macro

232 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

UCBINFO

� One or more blanks must follow UCBINFO.

PATHMAP

,MAPAREA=maparea addr maparea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RX-type address or register (2) - (12).
,DEVN=NONE Default : NONE

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the UCBINFO PATHMAP
macro with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO PATHMAP macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO PAVINFO
Use the UCBINFO PAVINFO macro to obtain selected information applicable to
each exposure (base and alias) of a Parallel Access Volume (PAV).

Syntax
The standard form of the PAVINFO option of the UCBINFO macro is written as
follows:

UCBINFO Macro

UCBINFO — Return Information from a UCB 233

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PAVINFO

PAVINFOSUM=NO Default : NO
PAVINFOSUM=YES

,PAVAREA=pavarea addr pavarea addr: RX-type address or register (2) - (12).

,PAVLEN=pavarea length addr pavarea lenth addr: RX-type address or register (2) - (12).

,SCHINFO=NO Default : NO
,SCHINFO=YES

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,UCBPTR=ucbptr ucbptr: RX-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

PAVINFO
Obtain selected information that applies to each exposure of a Parallel Access
Volume (PAV) device. The data returned by this function is an array. Depending
on the input device, the following is returned:

UCBINFO Macro

234 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

v When the input device is a PAV-base, the first array entry represents the
base and each subsequent array entry represents each of the bound
PAV-alias devices associated with the base. Note that if the base has no
bound PAV-aliases, then only the first array entry is filled in.

v When the input is a non-PAV DASD device, only the first array entry is filled
in.

v When the input device is a PAV-alias or a non-DASD, a non-zero return code
is returned.

PAVINFOSUM=NO
PAVINFOSUM=YES

Specifies whether to retrieve only a sum of channel measurement data and
model dependent subchannel data for the base device and all of its aliases.

Note: The model dependent subchannel data is only retrieved if
SCHINFO=YES.

NO Do not just retrieve a total of channel measurement data and model
dependent subchannel data for the base device and all of its aliases.
This option causes each element of the PAVA array to contain
information for the base device and each of its aliases.

YES Retrieve only a sum of channel measurement data and model
dependent subchannel data for the base device and all of its aliases.
This option causes the first element of the PAVA array to contain
information on the base device, however, the PAVACMB and
PAVASMDB fields will contain totals for the base and all of its aliases.

,PAVAREA= pavarea addr
Specifies the address of a required output field into which the system will return
information about the alias UCBs for the specified base device number or base
UCB address. This field is mapped by the mapping macro IOSDPAVA.

,PAVLEN=pavarea lengthaddr
Specifies the address or a register containing the length of the area
specified by the PAVAREA parameter.

,SCHINFO=NO
,SCHINFO=YES

Specifies whether to retrieve model-dependent subchannel data for the
device.

NO Do not retrieve model-dependent subchannel data for the device.

YES Retrieve model-dependent subchannel data for the device.

,DEVN=devn addr
Specifies the address of a halfword that contains the base device number in
binary form. The DEVN and UCBPTR parameters are mutually exclusive.

,UCBPTR=ucbptr
Specifies the address of a fullword that contains the address of the UCB
common segment. The DEVN and UCBPTR parameters are mutually exclusive.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when
UCBINFO is invoked does not match the token whose address is supplied here,
the system issues a return code to the caller.

UCBINFO Macro

UCBINFO — Return Information from a UCB 235

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a program call (PC)
v BRANCH: Specifies a branch entry

LINKAGE=BRANCH is intended for performance sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code , specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value in the range of 1 - 3.

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the return
code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and Reason Codes
When the UCBINFO PAVINFO macro returns control to your program, GPR 15 (or
retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or
rsncode addr, if you coded RSNCODE) contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: The PAVINFO function completed
successfully.

Action: None.

UCBINFO Macro

236 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

04 None Meaning: Program error. No UCB exists for the
device number specified in the DEVN parameter.

Action: Correct the device number and reissue
the macro.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller’s parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 03 Meaning: Program error.

The UCB address provided by the caller does not
represent a valid UCB.

Action: Correct the UCB address and reissue the
macro.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter and
reissue the macro.

08 0A Meaning: Program error. An error occurred when
the system attempted to reference the area
specified by the PAVAREA parameter.

Action: Correct the address specified on the
PAVAREA parameter and reissue the macro.

0C None Meaning: Environmental error. The I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the IOCTOKEN
parameter.

Action: Obtain the current I/O configuration token
by issuing an IOCINFO macro or by setting the
input IOCTOKEN parameter in the UCBINFO
macro to zero.

1C 01 Meaning: Program error. The device number or
UCB address provided by the caller specifies a
device that is not a DASD or is a PAV alias
device.

Action: Correct the DEVN or UCBPTR parameter
and reissue the macro.

1C 02 Meaning: Program error. The work area specified
with the PAVAREA parameter is not large enough
to contain the minimum amount of data. No data
is returned.

Action: Increase the size of the specified work
area and reissue the macro.

UCBINFO Macro

UCBINFO — Return Information from a UCB 237

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

1C 03 Meaning: Program error. The work area specified
with the PAVAREA parameter is not large enough
to contain an array element for each alias device.

Action: Increase the size of the specified work
area and reissue the macro.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

28 None Meaning: Program error. The device number or
UCB address provided by the caller represents an
alias UCB of a parallel access volume. The caller
must specify the base device number or base
UCB.

Action: Correct the DEVN or UCBPTR parameter
and reissue the macro.

Example
To invoke UCBINFO to return information about alias UCBs for a base device
number, code:

UCBINFO PAVINFO,DEVN=DEVNUM,PAVAREA=INFOAREA,PAVLEN=AREALEN, X
RETCODE=INFORTCD

.

.

.
DS 0D

DEVNUM DS H
INFOAREA DS CL256
AREALEN DS F
INFORTCD DS F

To invoke UCBINFO to return information about alias UCBs for a base UCB, code:
UCBINFO PAVINFO,UCBPTR=UCBP,PAVAREA=INFOAREA,PAVLEN=AREALEN, X

RETCODE=INFORTCD
.
.
.
DS 0D

UCBP DS A
INFOAREA DS CL256
AREALEN DS F
INFORTCD DS F

UCBINFO PAVINFO—List Form
Use the list form of the PAVINFO option of the UCBINFO macro together with the
execute form for applications that require reentrant code. The list form of the macro
defines an area of storage that the execute form uses to contain the parameters.

The list form of the PAVINFO option of the UCBINFO macro is written as follows:

UCBINFO Macro

238 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.
UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address
MF=(L,list addr, attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of UCBINFO PAVINFO with
the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO PAVINFO macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of X'0D', which forces the parameter list to a
doubleword boundary.

UCBINFO PAVINFO—Execute Form
Use the execute form of the PAVINFO option of the UCBINFO macro together with
the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list
form.

The execute form of the PAVINFO option of the UCBINFO macro is written as
follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.
UCBINFO

UCBINFO Macro

UCBINFO — Return Information from a UCB 239

� One or more blanks must follow UCBINFO.

PAVINFO

PAVINFOSUM=NO Default : NO
PAVINFOSUM=YES

,PAVAREA=pavarea addr pavarea addr: RX-type address or register (2) - (12).

,PAVLEN=pavarea length addr pavarea lenth addr: RX-type address or register (2) - (12).

,SCHINFO=NO Default : NO
,SCHINFO=YES

,DEVN=devn addr devn addr: RX-type address or register (2) - (12).

,UCBPTR=ucbptr ucbptr: RX-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of UCBINFO PAVINFO with
the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO PAVINFO macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO Macro

240 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

UCBINFO PRFXDATA
Use the UCBINFO PRFXDATA macro to obtain a copy of the UCB prefix extension
segment.

Syntax
The standard form of the PRFXDATA option of the UCBINFO macro is written as
follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PRFXDATA

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

Note: Specify either DEVN or UCBPTR, but not both.

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

PRFXDATA
Specifies that the system is to obtain information from the UCB prefix extension
segment.

UCBINFO Macro

UCBINFO — Return Information from a UCB 241

,DEVN=devn addr
Specifies the address of a halfword that contains, in binary form, the device
number of the device.

,UCBPTR=ucbptr addr
Specifies the address of a fullword that contains the address of the UCB
common segment. The caller can obtain the address of the UCB common
segment by a UCBPTR parameter on a UCBLOOK macro.

,UCBPAREA= ucbparea addr
Specifies the address of a 48-character storage area into which the system
copies the UCB prefix extension segment. The IOSDUPI mapping macro maps
the area.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when
UCBINFO is invoked does not match the token whose address is supplied here,
the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code , specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2

UCBINFO Macro

242 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the return
code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and Reason Codes
When the UCBINFO PRFXDATA macro returns control to your program, GPR 15 (or
retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or
rsncode addr, if you coded RSNCODE) contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: The PRFXDATA function completed
successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the
device number specified in the DEVN parameter.

Action: Correct the device number and reissue
the macro.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller’s parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 03 Meaning: Program error.

The UCB address provided by the caller does not
represent a valid UCB.

Action: Correct the UCB address and reissue the
macro.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

0C None Meaning: Environmental error. The I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the IOCTOKEN
parameter.

Action: Obtain the current I/O configuration token
by issuing an IOCINFO macro or by setting the
input IOCTOKEN parameter in the UCBINFO
macro to zero.

UCBINFO Macro

UCBINFO — Return Information from a UCB 243

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

Example
To invoke UCBINFO to obtain a copy of the UCB prefix extension segment, code:

UCBINFO PRFXDATA,DEVN=DEVNUM,UCBPAREA=UAREA, X
RETCODE=INFORTCD
.
.
.

DS 0D
DEVNUM DS H
UAREA DS CL48
INFORTCD DS F

UCBINFO PRFXDATA—List Form
Use the list form of the PRFXDATA option of the UCBINFO macro together with the
execute form for applications that require reentrant code. The list form of the macro
defines an area of storage that the execute form uses to contain the parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative List Form Macros” on page 12 for further information.

The list form of the PRFXDATA option of the UCBINFO macro is written as follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address
MF=(L,list addr, attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

UCBINFO Macro

244 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Parameters
The parameters are explained under the standard form of UCBINFO PRFXDATA
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO PRFXDATA macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a doubleword
boundary.

UCBINFO PRFXDATA—Execute Form
Use the execute form of the PRFXDATA option of the UCBINFO macro together
with the list form of the macro for applications that require reentrant code. The
execute form of the macro stores the parameters into the storage area defined by
the list form.

The execute form of the PRFXDATA option of the UCBINFO macro is written as
follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PRFXDATA

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

Note: Specify either DEVN or UCBPTR, but not both.

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

UCBINFO Macro

UCBINFO — Return Information from a UCB 245

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of UCBINFO PRFXDATA
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO PRFXDATA macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO Macro

246 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

UCBLOOK — Obtain Addresses of UCB Segments

Description
The UCBLOOK macro obtains the address of the following for a given device
number or volume serial number:
v The UCB common segment
v The UCB common extension segment
v The UCB prefix extension segment

The input device number may be specified as binary or EBCDIC, and may be a
3-digit or 4-digit number.

You can use UCBLOOK to locate any UCB segment, including a segment for a
dynamic UCB. The caller must pin the UCB by means of the PIN parameter unless
one of the following is true:

v The caller is running in an environment where dynamic I/O configuration changes
cannot occur.

v The caller can otherwise guarantee that the UCB will not be deleted.

After the system returns the address of the UCB segment, and the caller is done
processing the UCB, the caller must unpin the UCB. The caller can unpin the UCB
by using the UCBPIN macro with the UNPIN parameter.

Note: The caller can optionally restrict the search to UCBs that are static and
installation-static, have 3 digit device numbers, or are below 16 megabytes.

Environment
The requirements for the caller are:

Minimum authorization : Supervisor state or PKM keys 0-7

For LINKAGE=BRANCH, all of the following:
v Supervisor state with PSW key 0
v 31-bit addressing mode
v Primary ASC mode
v Parameter list and any data areas it points to must be in

fixed storage or, if the caller is disabled, in disabled
reference (DREF) storage

Dispatchable unit mode : Task or SRB
Cross memory mode : Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode : Primary or access register (AR)
Interrupt status : Enabled or disabled for I/O and external interrupts
Locks : No requirement
Control parameters : Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the caller’s dispatchable unit access list (DU-AL)

Programming Requirements
If in AR mode, specify SYSSTATE ASCENV=AR before invoking the macro.

© Copyright IBM Corp. 1988, 2002 247

Restrictions
None.

Input Register Information
Before issuing the UCBLOOK macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code if GPR 15 contains a return code of 08; otherwise,

used as a work register by the system
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Performance Implications
None.

Syntax
The standard form of the UCBLOOK macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBLOOK

UCBLOOK

� One or more blanks must follow UCBLOOK

DEVN=devn addr devn addr: RS-type address or register (2) - (12).
DEVNCHAR=devnchar addr devnchar addr: RS-type address or register (2) - (12).
VOLSER=volser addr volser addr: RS-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,UCBCXPTR=ucbcxptr addr ucbcxptr addr: RS-type address or register (2) - (12).

,UCBPXPTR=ucbpxptr addr ucbpxptr addr: RS-type address or register (2) - (12).

UCBLOOK Macro

248 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).
,UCBPAREA=NONE Default : NONE

,LOC=BELOW Default : BELOW
,LOC=ANY

,PIN
,NOPIN Note : TEXT and PTOKEN are required with PIN and are not valid with

NOPIN.

,TEXT=text addr text addr: RX-type address

,PTOKEN=ptoken addr ptoken addr: RS-type address or register (2) - (12).

,LASTING Note : Optional with PIN; not valid with NOPIN.

,UNBOUND_ALIAS=NO Default : NO
,UNBOUND_ALIAS=YES

,DEVCLASS=DASD Note : DEVCLASS is valid only with VOLSER=volser addr
,DEVCLASS=DASDTAPE Default : DASDTAPE
,DEVCLASS=TAPE

,DYNAMIC=NO Default : NO
,DYNAMIC=YES

,RANGE=3DIGIT Default : 3DIGIT
,RANGE=ALL

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).
,IOCTOKEN=NONE Default : NONE

,LINKAGE=SYSTEM Default SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

DEVN=devn addr
DEVNCHAR=devnchar addr
VOLSER=volser addr

Specifies the address of an input field that identifies the device whose UCB
address is to be obtained.

UCBLOOK Macro

UCBLOOK — Obtain Addresses of UCB Segments 249

DEVN specifies the address of a halfword that contains, in binary form, the
device number of the device whose UCB address is to be obtained.

DEVNCHAR specifies the address of a 4-character field that contains, in
EBCDIC, the device number of the device whose UCB address is to be
obtained.

Note: A 3-digit device number can be represented as either ’ ddd’ or ’0ddd’
where ddd is the device number.

VOLSER specifies the address of a 6-character field that contains, in EBCDIC,
the volume serial number of the device whose UCB address is to be obtained.

,UCBPTR=ucbptr addr
Specifies the address of a fullword field in which the address of the UCB
common segment associated with the requested device (DEVN, DEVNCHAR,
or VOLSER) will be returned.

,UCBCXPTR=ucbcxptr addr
Specifies the address of a fullword field in which the system returns the address
of the UCB common extension segment associated with the specified device
(DEVN, DEVNCHAR, or VOLSER). Use the IEFUCBOB mapping macro to map
the UCB common extension segment.

,UCBPXPTR=ucbpxptr addr
Specifies the address of a fullword field in which the system returns the address
of the UCB prefix extension segment associated with the specified device
(DEVN, DEVNCHAR, or VOLSER). Use the IOSDUPFX mapping macro to map
the UCB prefix extension segment.

,UCBPAREA= ucbparea addr
,UCBPAREA=NONE

Specifies the address of a 48-character storage area that will receive a copy of
the UCB prefix extension segment. The copy of the UCB prefix extension
segment is mapped by the IOSDUPI mapping macro.

,LOC=BELOW
,LOC=ANY

Specifies whether the search should be restricted to below 16 megabyte UCB
(LOC=BELOW) or should also include above 16 megabyte UCBs (LOC=ANY).

,PIN
,NOPIN

Specifies whether the UCB is to be pinned to make it ineligible for deletion
through dynamic I/O configuration changes. Pinning the UCB ensures that it
cannot be deleted while the look-up process is taking place. The PIN parameter
specifies that the UCB should be pinned, and NOPIN specifies that it should
not. Programs that pin a UCB are also responsible for unpinning it once the
UCB is no longer subject to processing. Use the UCBPIN macro with the
UNPIN option to unpin the UCB.

,TEXT=text addr
Specifies the address of a 58-character input field containing text that
documents the reason for the PIN request. If the pin request remains
outstanding during a request for a configuration change that would delete this
UCB, the text specified by the TEXT parameter will be displayed in a message
identifying the reason for a configuration change failure.

UCBLOOK Macro

250 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,PTOKEN=ptoken addr
Specifies the address of an 8-character area that is to receive the pin token for
the UCB. The caller must use the pin token when unpinning the UCB through
the UCBPIN service.

,LASTING
Specifies that the UCB will not be unpinned automatically by the system at the
time of termination of the task or address space with which the pin is
associated.

When you code LASTING, the system cannot dynamically delete the UCB until
your program issues UCBPIN with the UNPIN parameter.

,UNBOUND_ALIAS=NO
,UNBOUND_ALIAS=YES

Specifies whether the scan should include unbound alias UCBs.

YES Include unbound alias UCBs

NO Do not include unbound alias UCBs

Note: The UNBOUND_ALIAS function is intended for IOS use only.

,DEVCLASS=DASD
,DEVCLASS=DASDTAPE
,DEVCLASS=TAPE

Specifies the device class that is to be searched for the VOLSER look-up.
DASD Searches UCBs for direct access device class
DASDTAPE Searches UCBs for DASD and tape classes
TAPE Searches UCBs for tape class

,DYNAMIC=NO
,DYNAMIC=YES

Specifies if static or dynamic UCBs are to be looked at:
NO Only static and installation-static UCBs
YES Static, installation-static, and dynamic UCBs

,RANGE=3DIGIT
,RANGE=ALL

Specifies whether the look-up should be restricted to UCBs with 3-digit device
numbers (3DIGIT) or should also include UCBs with 4-digit device numbers
(ALL).

,IOCTOKEN=ioctoken addr
,IOCTOKEN=NONE

Specifies the address of a 48-character area that contains the MVS I/O
configuration token that the caller supplies to UCBLOOK. Obtain this token by
issuing the IOCINFO macro, which is described in z/OS MVS Programming:
Assembler Services Reference ABE-HSP. If the I/O configuration token that is
current when UCBLOOK is invoked does not match the token whose address is
supplied as input by ioctoken addr, the caller will be notified through a return
code.

If the input IOCTOKEN (specified by ioctoken addr) is set to binary zeros,
UCBLOOK will set IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that should be generated:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH : Specifies a branch entry

UCBLOOK Macro

UCBLOOK — Obtain Addresses of UCB Segments 251

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code , specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code. The
return code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0.

ABEND Codes
None.

Return and Reason Codes
When control returns from UCBLOOK, GPR 15 (and retcode addr, if you coded
RETCODE) contains a return code and, for return code X'08', GPR 0 (and rsncode
addr, if you coded RSNCODE) contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning : Completed successfully.

Action : None.

04 None Meaning : Program error. No UCB exists for the
device number or VOLSER specified as input.
The contents of UCBPTR remain unchanged.

Action : Correct the DEVN, DEVNCHAR, or
VOLSER parameter. Also, make sure the
parameter list was not overlaid.

UCBLOOK Macro

252 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

08 01 Meaning : Program error. An ALET in the
parameter list is not valid.

Action : Make sure the parameter list was not
overlaid.

08 02 Meaning : Program error. An error occurred in
accessing the caller’s parameter list.

Action : Make sure the parameter list was not
overlaid.

08 04 Meaning : Program error. An error occurred in
referencing the caller-supplied area for the UCB
prefix extension segment. This reason code is
valid only for callers using the UCBPAREA
parameter.

Action : Correct the UCBPAREA parameter.

08 05 Meaning : Program error. An error occurred in
referencing the caller-supplied area for the
IOCTOKEN. This reason code is valid only for
callers using the IOCTOKEN keyword.

Action : Correct the IOCTOKEN parameter.

08 0A Meaning : Program error. An error occurred in
referencing the caller-supplied area for the pin
reason text. This reason code is valid only for
callers using the TEXT parameter.

Action : Correct the TEXT parameter.

0C None Meaning : Program error. The UCB definition for
the device specified in DEVN, DEVNCHAR, or
VOLSER is not longer consistent with the UCB
definition represented by the input I/O
configuration token, or a DDR has occurred. This
return code is valid only for callers using the
IOCTOKEN parameter.

Action : Change the IOCTOKEN parameter or
change the program so that the token is correct.

20 None Meaning : System error. An unexpected error
occurred.

Action : Supply the return code to the appropriate
IBM support personnel.

UCBLOOK—List Form
Use the list form of the UCBLOOK macro together with the execute form for
applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses for storing the parameters.

Syntax
This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative List Form Macros” on page 12 for further information.

The list form of the UCBLOOK macro is written as follows:

UCBLOOK Macro

UCBLOOK — Obtain Addresses of UCB Segments 253

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBLOOK

UCBLOOK

� One or more blanks must follow UCBLOOK

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string.
MF=(L,list addr,0D) Default : 0D

Parameters
The parameters are explained under the standard form of the UCBLOOK macro
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBLOOK macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a doubleword
boundary.

UCBLOOK—Execute Form
Use the execute form of the UCBLOOK macro together with the list form for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the UCBLOOK macro is written as follows:

name name: Symbol. Begin name in column 1.

UCBLOOK Macro

254 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

� One or more blanks must precede UCBLOOK

UCBLOOK

� One or more blanks must follow UCBLOOK

DEVN=devn addr devn addr: RS-type address or register (2) - (12).
DEVNCHAR=devnchar addr devnchar addr: RS-type address or register (2) - (12).
VOLSER=volser addr volser addr: RS-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,UCBCXPTR=ucbcxptr addr ucbcxptr addr: RS-type address or register (2) - (12).

,UCBPXPTR=ucbpxptr addr ucbpxptr addr: RS-type address or register (2) - (12).

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).
,UCBPAREA=NONE Default : NONE

,LOC=BELOW Default : BELOW
,LOC=ANY

,PIN
,NOPIN Note : TEXT and PTOKEN are required with PIN and are not valid with

NOPIN.

,TEXT=text addr text addr: RX-type address

,PTOKEN=ptoken addr ptoken addr: RS-type address or register (2) - (12).

,LASTING Note : Optional with PIN; not valid with NOPIN.

,UNBOUND_ALIAS=NO Default : NO
,UNBOUND_ALIAS=YES

,DEVCLASS=DASD Note : DEVCLASS is valid only with VOLSER=volser addr
,DEVCLASS=DASDTAPE Default : DASDTAPE
,DEVCLASS=TAPE

,DYNAMIC=NO Default : NO
,DYNAMIC=YES

,RANGE=3DIGIT Default : 3DIGIT
,RANGE=ALL

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).
,IOCTOKEN=NONE Default : NONE

,LINKAGE=SYSTEM Default SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION

UCBLOOK Macro

UCBLOOK — Obtain Addresses of UCB Segments 255

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).
,MF=(E,list addr,COMPLETE) Default : COMPLETE

Parameters
The parameters are explained under the standard form of the UCBLOOK macro
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBLOOK macro.

The list addr parameter specifies the address of the storage area for the
parameter list. COMPLETE specifies that the system is to check for required
parameters and supply defaults for optional parameters that were not specified.

UCBLOOK Macro

256 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

UCBPIN — Pinning or Unpinning a UCB

Description
Pinning a UCB ensures that the UCB cannot be deleted while a program is in the
process of looking at a UCB. Programs that pin a UCB are also responsible for
unpinning it once the UCB is no longer subject to processing.

Authorized programs that obtain UCB addresses, either through UCB services or
other means, can use the UCBPIN macro to pin and unpin UCBs. Pinning and
unpinning should be done any time a UCB is used, unless one of the following is
true:

v The caller is running in an environment where dynamic configuration changes
cannot occur.

v The caller can otherwise guarantee that the UCB will not be deleted. (The device
is allocated.)

Movepin allows users to move pin information from one PAV UCB to another.

Note: The movepin function is intended for IOS use only.

Environment
The requirements for the caller are:

Minimum authorization : Supervisor state or PKM keys 0-7
Dispatchable unit mode : Task or SRB
Cross memory mode : PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode : Primary or access register (AR)
Interrupt status : Enabled or disabled for I/O and external interrupts
Locks : No requirement
Control parameters : Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the caller’s dispatchable unit access list (DU-AL)

Programming Requirements
If the program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
UCBPIN. SYSSTATE ASCENV=AR tells the system to generate code appropriate
for AR mode.

Restrictions
None.

Register Information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

© Copyright IBM Corp. 1988, 2002 257

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code if GPR 15 contains a return code of 08; otherwise,

used as a work register by the system
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Performance Implications
None.

Syntax
The standard form of the UCBPIN macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBPIN

UCBPIN

� One or more blanks must follow UCBPIN

PIN
UNPIN Note : See the table following this diagram for valid parameter combinations.

,PTOKEN=ptoken addr ptoken addr: RS-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,TEXT=text addr text addr: RX-type address

,LASTING

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

UCBPIN Macro

258 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

MOVEPIN

,TO=xto xto: RS-type address or register (2) - (12).

,FROM=xfrom xfrom: RS-type address or register (2) - (12).

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

The following table shows how other parameters may be used with PIN and UNPIN.

Parameters PIN UNPIN

PTOKEN required required

UCBPTR required not valid

TEXT required not valid

LASTING optional not valid

IOCTOKEN optional not valid

LINKAGE optional optional

RETCODE optional optional

RSNCODE optional optional

Parameters PIN UNPIN MOVEPIN

PTOKEN required required not valid

UCBPTR required not valid not valid

TEXT required not valid not valid

LASTING optional not valid not valid

IOCTOKEN optional not valid not valid

LINKAGE optional optional optional

RETCODE optional optional optional

RSNCODE optional optional optional

TO not valid not valid required

FROM not valid not valid required

Parameters
The parameters are explained as follows:

PIN
UNPIN

Specifies whether the UCB is to be pinned or unpinned.

UCBPIN Macro

UCBPIN — Pinning or Unpinning a UCB 259

,PTOKEN=ptoken addr
Specifies the address of an 8-character field used to contain the pin token. For
PIN requests, PTOKEN specifies an output field that receives the pin token for
the UCB that is to be pinned. For UNPIN requests, PTOKEN specifies an input
field that contains the pin token for the UCB that is to be unpinned; this token
must match the one that was returned on the corresponding PIN request.
UCBPIN will reset PTOKEN to binary zeros if the UNPIN function is successful.

,UCBPTR=ucbptr addr
Specifies the address of a pointer containing the address of the UCB common
segment for the UCB that is to be pinned.

,TEXT=text addr
Specifies the address of a 58-character input field containing text that
documents the reason for the PIN request. If the pin request remains
outstanding during a request for a configuration change that would delete this
UCB, the text specified by the TEXT parameter will be displayed in a message
identifying the reason for a configuration change failure.

,LASTING
Specifies that the UCB will not be unpinned automatically by the system at the
time of termination of the task or address space with which the pin is
associated.

When you code LASTING, the system cannot dynamically delete the UCB until
your program issues UCBPIN with the UNPIN parameter.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character area that contains the MVS I/O
configuration token that you supply to UCBPIN. You can obtain this token by
issuing the IOCINFO macro, which is described in z/OS MVS Programming:
Assembler Services Reference ABE-HSP. If the I/O configuration token that is
current when UCBPIN is invoked does not match the token specified as input
by ioctoken addr, the caller will be notified through a return code.

If the input IOCTOKEN (specified by ioctoken addr) is set to binary zeros,
UCBPIN will set IOCTOKEN to the current I/O configuration token.

MOVEPIN
Specifies whether to move pin-related information from one Parallel Access
Volume (PAV) to another. The FROM and TO UCBs are checked to insure that
one is an active PAV-base and the other is a PAV-alias bound to that base.

Note: The MOVEPIN function is intended for IOS use only.

TO=to
Specifies the address of the UCB common segment of the device that the
pin information is being moved to.

FROM=from
Specifies the address of the UCB common segment of the device that the
pin information is being moved from.

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code. The
return code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0 if the return code is X'08'.

,LINKAGE= SYSTEM

UCBPIN Macro

260 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,LINKAGE= BRANCH
Specifies the type of call that the system is to generate:

v SYSTEM: Specifies a Program Call (PC)

v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

Return and Reason Codes
When control returns from UCBPIN, GPR 15 (and retcode addr, if you coded
RETCODE) contains one of the following return codes:

Table 38. Return Codes for the UCBPIN Macro

Hexadecimal Return
Code

Meaning

00 Meaning : UCBPIN completed successfully. For PIN requests, the UCB has
been pinned and the pin token has been returned in PTOKEN. For UNPIN
requests, the UCB has been unpinned and PTOKEN has been reset to
binary zeros.

08 Meaning : There is an error in the caller’s parameters, as explained by the
hexadecimal reason code that accompanies this return code. The reason
code is in GPR 0 (and in rsncode addr, if you coded RSNCODE).

Reason Code Meaning

01 An ALET in the parameter list is not valid; the caller
might have inadvertently written over an area in the
parameter list.

02 An error occurred in accessing the caller’s parameter
list.

03 The UCB address provided by the caller does not
represent a valid UCB.

04 The PTOKEN supplied as input on an UNPIN request
does not represent a valid pin token.

05 An error occurred in referencing the user-supplied work
area for the IOCTOKEN. This reason code is valid only
for callers using the IOCTOKEN keyword.

0A An error occurred in referencing the user-supplied work
area for the pin reason text. This reason code is valid
only for callers using the TEXT keyword.

0B MOVEPIN was requested, but the FROM and TO
devices did not represent an active PAV-base and a
bound PAV-alias on that base. The request is rejected.
(This reason code is valid only for callers using the
MOVEPIN function.)

0C Meaning : The UCB definition is not consistent with the input configuration
token, or a DDR has occurred. This return code is valid only for callers
using the IOCTOKEN keyword.

20 Meaning : An unexpected error occurred.

UCBPIN—List Form
Use the list form of the UCBPIN macro together with the execute form for
applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses for storing the parameters.

UCBPIN Macro

UCBPIN — Pinning or Unpinning a UCB 261

Syntax
This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative List Form Macros” on page 12 for further information.

The list form of the UCBPIN macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBPIN

UCBPIN

� One or more blanks must follow UCBPIN

MF=(L,list addr) list addr: Symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string.
MF=(L,list addr,0D) Default : 0D

Parameters
The parameters are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBPIN macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a doubleword
boundary.

UCBPIN—Execute Form
Use the execute form of the UCBPIN macro together with the list form for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the UCBPIN macro is written as follows:

UCBPIN Macro

262 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBPIN

UCBPIN

� One or more blanks must follow UCBPIN

PIN
UNPIN Note : See the table following this diagram for valid parameter combinations.

,PTOKEN=ptoken addr ptoken addr: RS-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,TEXT=text addr text addr: RX-type address

,LASTING

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

MOVEPIN

,TO=xto xto: RS-type address or register (2) - (12).

,FROM=xfrom xfrom: RS-type address or register (2) - (12).

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default : SYSTEM
,LINKAGE=BRANCH

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).
,MF=(E,list addr,COMPLETE) Default : COMPLETE

The following table shows how other parameters may be used with PIN and UNPIN.

Parameters PIN UNPIN MOVEPIN

PTOKEN required required not valid

UCBPTR required not valid not valid

UCBPIN Macro

UCBPIN — Pinning or Unpinning a UCB 263

Parameters PIN UNPIN MOVEPIN

TEXT required not valid not valid

LASTING optional not valid not valid

IOCTOKEN optional not valid not valid

LINKAGE optional optional optional

RETCODE optional optional optional

RSNCODE optional optional optional

MF required required required

TO not valid not valid required

FROM not valid not valid required

Parameters
The parameters are explained under the standard form of the UCBPIN macro with
the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBPIN macro.

The list addr parameter specifies the address of the storage area for the
parameter list. COMPLETE specifies that the system is to check for required
parameters and supply defaults for optional parameters that were not specified.

UCBPIN Macro

264 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

UCBSCAN — Scan UCBs

Description
Use the UCBSCAN macro to scan unit control blocks (UCBs) and return a copy of
a UCB or a UCB address on each invocation.

Two types of scans are available with UCBSCAN: A scan of all UCBs, and a scan
of all UCBs within a particular device class. For each type of scan, the caller may
optionally:
v Restrict the scan to UCBs defined as static or installation-static.
v Restrict the scan to UCBs with 3-digit device numbers.
v Restrict the scan to addresses of below 16 megabyte UCBs
v Request nonbase exposures of a multiple-exposure device, supported on

systems prior to MVS/ESA SP 5.2.
v Request alias UCBs for a parallel access volume.
v Specify the device number with which the scan should begin.

UCBSCAN presents the UCBs in ascending device number order. UCBSCAN
provides two options as follows:

COPY On each invocation, UCBSCAN returns a copy of requested UCB segments
and data in caller-supplied areas.

Address
On each invocation, UCBSCAN returns the address of the UCB, the
address of requested UCB segments, and, optionally, a copy of the UCB
prefix extension segment. The caller can specify whether the scan includes
above 16 megabyte UCBs or only below 16 megabyte UCBs. The caller
must pin and unpin the UCB unless one of the following is true:

v The caller is running in an environment where dynamic configuration
changes cannot occur

v The caller can otherwise guarantee that the UCB will not be deleted.

See z/OS MVS Programming: Authorized Assembler Services Guide for
information on pinning UCBs.

LINKAGE=BRANCH is intended for performance-sensitive programs.

Environment
The requirements for the caller are:

Minimum authorization: For the COPY parameter: Problem state with any PSW key

For the ADDRESS parameter: Supervisor state or PKM
allowing key 0-7

For the LINKAGE=BRANCH parameter, all of the following:
v Supervisor state with key 0
v 31-bit addressing mode
v Primary ASC mode
v Parameter list and any data areas it points to must be in

fixed storage or, if the caller is disabled, in disabled
reference (DREF) storage.

Dispatchable unit mode: Task or SRB

© Copyright IBM Corp. 1988, 2002 265

Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit.
ASC mode: Primary or access register (AR).
Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space or, for AR-mode

callers, must be in an address/data space that is
addressable through a public entry on the caller’s
dispatchable unit access list (DU-AL).

Programming Requirements
If in AR mode, issue SYSSTATE ASCENV=AR before issuing UCBSCAN.

Restrictions
None.

Input Register Information
Before issuing the UCBSCAN macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code if GPR 15 contains a return code of 04 or 08;

otherwise, used as a work register by the system
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Performance Implications
None.

Parameters
The parameters are explained as follows:

COPY
Specifies that a copy of the UCB is to be obtained. See z/OS HCD Planning for
a list of the MVS services that accept a UCB copy.

Note: When you issue UCBSCAN to obtain a UCB copy, the UCBID field in the
copy is set to x‘CC’.

UCBSCAN Macro

266 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,WORKAREA= workarea addr
Specifies the address of a 100-character work area used by the UCBSCAN
service. The caller must initialize this work area to binary zeros before starting a
UCB scan. On subsequent invocations of UCBSCAN within the same scan, the
caller must leave the contents of this work area unchanged.

,UCBAREA= ucbarea addr
Specifies the address of a 48-character storage area that will receive a copy of
the UCB common segment and the UCB device-dependent segment. See z/OS
HCD Planning for a list of the MVS services that accept a UCB copy.

The caller does not need to initialize this area. Use the IEFUCBOB mapping
macro to map the area. The contents of certain fields in the copy are:

v The UCBEXTP field contains either:

– The address of the CMXTAREA, if CMXTAREA is below 16 MB

– 0, if CMXTAREA is above 16 MB or if the CMXTAREA parameter is not
specified

v The UCBNXUCB field is 0, because this field is not valid in the UCB copy.

v Address fields in the copy might not contain valid addresses, so do not use
these addresses to reference the data areas they point to.

,CMXTAREA=cmxtarea addr
,CMXTAREA=NONE

Specifies the address of a 32-character storage area that will receive a copy of
the UCB common extension segment. See z/OS HCD Planning for a list of the
MVS services that accept a UCB copy and require this segment as part of a
UCB copy.

Use the UCBCMEXT DSECT in the IEFUCBOB mapping macro to map the
area. If the CMXTAREA area is below 16 MB, the UCBEXTP field in the
UCBAREA area contains the address of the CMXTAREA area, If the
CMXTAREA area is above 16 MB, the caller must explicitly supply the address
of the CMXTAREA area because the UCBEXTP field will contain 0.

The UCBIEXT field contains 0 because this field is not valid in the UCB copy.

The UCBCLEXT field contains the address of the DCEAREA if the UCB has a
device class extension and the caller specified the DCEAREA parameter.
Otherwise, the field contains 0.

,UCBPAREA= ucbparea addr
,UCBPAREA=NONE

Specifies the address of a 48-character storage area that will receive a copy of
the UCB prefix extension segment. The area can be mapped by the IOSDUPI
mapping macro.

,DCEAREA=dcearea addr
,DCEAREA=NONE

Specifies the address of a storage area that will receive a copy of the UCB
device class extension segment. See z/OS HCD Planning for a list of the MVS
services that accept a UCB copy and require this segment as part of a UCB
copy.

Note: If DCEAREA=NONE is coded, then DCELEN=0 must be coded. If
DCEAREA=NONE is defaulted, then DCELEN does not have to be
coded.

UCBSCAN Macro

UCBSCAN — Scan UCBs 267

,DCELEN=length addr
Specifies the address of a 2-byte field that contains the length of the area
specified by DCEAREA. The length specified must be 1 through 256 bytes.
DCELEN is required with DCEAREA.

,VOLSER=volser addr
,VOLSER=NONE

Specifies the address of a 6-character field that indicates, in EBCDIC, the
volume serial number of the device for which a UCB copy is to be obtained.

,DEVNCHAR=devnchar addr
Specifies the address of a 4-character field that is to receive the EBCDIC
device number associated with the UCB copy.

,DEVN=devn addr
,DEVN=0

Specifies (DEVN=devn addr) an input halfword that contains, in binary form, the
device number with which the scan is to begin. The default, DEVN=0, starts the
scan with the first UCB.

,DYNAMIC=NO
,DYNAMIC=YES

Specifies whether the scan should be restricted to static and installation-static
UCBs (DYNAMIC=NO) or should also include dynamic UCBs (DYNAMIC=YES).

,RANGE=3DIGIT
,RANGE=ALL

Specifies whether the scan should be restricted to UCBs with 3-digit device
numbers (3DIGIT) or should also include UCBs with 4-digit device numbers
(ALL).

,NONBASE=NO
,NONBASE=YES

Specifies whether the scan should include nonbase exposures for a
multiple-exposure device, supported on systems prior to MVS/ESA SP 5.2. NO
specifies only the base exposure, and YES specifies all exposures.

Specifies whether the scan should include bound alias UCBs for a parallel
access volume. NO specifies that bound alias UCBs will not be included. Yes
specifies that bound alias UCBs will be included.

,UNBOUND_ALIAS=NO
,UNBOUND_ALIAS=YES
,UNBOUND_ALIAS=ONLY

Specifies whether the scan should include unbound alias UCBs.

YES Include unbound alias UCBs

NO Do not include unbound alias UCBs

ONLY Include only unbound alias UCBs

Note: The UNBOUND_ALIAS function is intended for IOS use only.

,DEVCLASS=ALL
,DEVCLASS=CHAR
,DEVCLASS=COMM
,DEVCLASS=CTC
,DEVCLASS=DASD
,DEVCLASS=DISP
,DEVCLASS=TAPE

UCBSCAN Macro

268 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,DEVCLASS=UREC
Specifies the device class that is to be scanned:
ALL Scans UCBs for all device classes
CHAR Scans UCBs for character reader device class
COMM Scans UCBs for communications device class
CTC Scans UCBs for channel to channel device class
DASD Scans UCBs for direct access device class
DISP Scans UCBs for display device class
TAPE Scans UCBs for tape device class
UREC Scans UCBs for unit record device class

,DEVCID=devcid addr
Specifies the address of an 8-bit input field that contains the hexadecimal
device class ID of the device class to be scanned.

If you specify DEVCID, only UCBs of the particular device class specified will
be presented, and the DEVCLASS parameter is ignored.

,IOCTOKEN=ioctoken addr
,IOCTOKEN=NONE

Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when
UCBSCAN is invoked does not match the token whose address is supplied as
input by ioctoken addr, the caller will be notified through a return code.

If the input IOCTOKEN (specified by ioctoken addr) is set to binary zeros,
UCBSCAN will set IOCTOKEN to the current I/O configuration token at the start
of the scan.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that should be generated:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

UCBSCAN Macro

UCBSCAN — Scan UCBs 269

v 1, if you use the currently available parameters.

To code , specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code. The
return code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0.

Return and Reason Codes
When control returns from USBSCAN, GPR 15 (and retcode addr, if you coded
RETCODE) contains a return code and, for some return codes, GPR 0 (or rsncode
addr, if you coded RSNCODE) contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: UCBSCAN completed successfully.

Action: None.

04 01 Meaning: UCBSCAN processing ended. All UCBs
that met the search criteria have been presented
to the caller. The contents of UCBAREA are
unchanged, and WORKAREA has been reset to
binary zeros.

Action: None.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.
Possibly the caller wrote over an area in the
parameter list; look for this error.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller’s parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 03 Meaning: Program error. An error occurred in
referencing the caller-supplied area for the UCB
copy; the area was specified in the UCBAREA
parameter.

Action: Correct the UCBAREA parameter.

08 04 Meaning: Program error. An error occurred in
referencing the caller-supplied area for the UCB
prefix extension segment data. This reason code
is valid only for callers using the UCBPAREA
parameter.

Action: Correct the UCBPAREA parameter.

UCBSCAN Macro

270 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 08 Meaning: Program error. An error occurred in
referencing the caller-supplied work area specified
in the WORKAREA parameter.

Action: Correct the WORKAREA parameter.

08 09 Meaning: Program error. An error occurred in
referencing the caller-supplied CMXTAREA area.
This reason code is valid only for callers using the
CMXTAREA parameter.

Action: Correct the CMXTAREA parameter.

08 0B Meaning: Program error. An error occurred in
referencing the caller-supplied DCEAREA area.
This reason code is valid only for callers using the
DCEAREA parameter.

Action: Correct the DCEAREA parameter.

08 0C Meaning: Program error. The caller specified a
volume serial number that is not valid. (Note that
binary zeros are not considered valid.) This
reason code is valid only for callers using the
VOLSER parameter.

Action: Correct the VOLSER parameter.

08 0D Meaning: Program error. For the DCEAREA
token, the caller specified a length that is
negative, is zero, or exceeds 256 bytes. This
reason code is valid only for callers using the
DCELEN parameter.

Action: Correct the DCELEN parameter.

0C None Meaning: Environmental error. The I/O
configuration has changed, so that the I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the IOCTOKEN
parameter.

Action: Obtain the current I/O configuration token
by issuing an IOCINFO macro or by setting the
input IOCTOKEN parameter in the UCBINFO
macro to zero. Start the scan from the beginning.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

UCBSCAN Macro

UCBSCAN — Scan UCBs 271

UCBSCAN COPY

Syntax
The standard form of the COPY function of the UCBSCAN macro is written as
follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN

� One or more blanks must follow UCBSCAN.

COPY Default: COPY

,WORKAREA=workarea addr workarea addr: RX-type address or register (2) - (12).

,UCBAREA=ucbarea addr ucbarea addr: RX-type address or register (2) - (12).

,CMXTAREA=cmxtarea addr cmxtarea addr: RX-type address or register (2) - (12).
,CMXTAREA=NONE Default: NONE

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).
,UCBPAREA=NONE Default: NONE

,DCEAREA=dcearea addr dcearea addr: RX-type address or register (2) - (12).
,DCEAREA=NONE Default: NONE

,DCELEN=length addr length addr: RS-type address or register (2) - (12).
Note: DCELEN is valid only with DCEAREA and is required with DCEAREA.

,VOLSER=volser addr volser addr: RS-type address or register (2) - (12).
,VOLSER=NONE Default: NONE

,DEVNCHAR=devnchar addr devnchar addr: RS-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
,DEVN=0 Default: 0

,DYNAMIC=NO Default: NO
,DYNAMIC=YES

,RANGE=3DIGIT Default: 3DIGIT
,RANGE=ALL

,NONBASE=NO Default: NO
,NONBASE=YES

,UNBOUND_ALIAS=NO Default: NO

UCBSCAN Macro

272 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,UNOUND_ALIAS=YES

,DEVCLASS=ALL Default: ALL
,DEVCLASS=CHAR
,DEVCLASS=COMM
,DEVCLASS=CTC
,DEVCLASS=DASD
,DEVCLASS=DISP
,DEVCLASS=TAPE
,DEVCLASS=UREC

,DEVCID=devcid addr devcid addr: RS-type address
,DEVCID=0 Default: 0

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).
,IOCTOKEN=NONE Default: NONE

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 1

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

UCBSCAN COPY—List Form
Use the list form of the UCBSCAN macro together with the execute form for
applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses for storing the parameters.

Syntax
This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative List Form Macros” on page 12 for further information.

The list form of the COPY function of the UCBSCAN macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN

� One or more blanks must follow UCBSCAN.

UCBSCAN Macro

UCBSCAN — Scan UCBs 273

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 1

MF=(L,list addr) list addr: Symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string.
MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under that standard form of the UCBSCAN macro
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBSCAN macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a doubleword
boundary.

UCBSCAN COPY—Execute Form
Use the execute form of the UCBSCAN macro together with the list form for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the COPY function of the UCBSCAN macro is written as
follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN

� One or more blanks must follow UCBSCAN.

COPY Default: COPY

UCBSCAN Macro

274 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,WORKAREA=workarea addr workarea addr: RX-type address or register (2) - (12).

,UCBAREA=ucbarea addr ucbarea addr: RX-type address or register (2) - (12).

,CMXTAREA= cmxtarea addr cmxtarea addr: RX-type address or register (2) - (12).
,CMXTAREA=NONE Default: NONE

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).
,UCBPAREA=NONE Default: NONE

,DCEAREA= dcearea addr dcearea addr: RX-type address or register (2) - (12).
,DCEAREA=NONE Default: NONE

,DCELEN=length addr length addr: RS-type address or register (2) - (12).
Note: DCELEN is valid only with DCEAREA and is required with DCEAREA.

,VOLSER=volser addr volser addr: RS-type address or register (2) - (12).
,VOLSER=NONE Default: NONE

,DEVNCHAR=devnchar addr devnchar addr: RS-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
,DEVN=0 Default: 0

,DYNAMIC=NO Default: NO
,DYNAMIC=YES

,RANGE=3DIGIT Default: 3DIGIT
,RANGE=ALL

,NONBASE=NO Default: NO
,NONBASE=YES

,UNBOUND_ALIAS=NO Default: NO
,UNBOUND_ALIAS=YES
,UNBOUND_ALIAS=ONLY

,DEVCLASS=ALL Default: ALL
,DEVCLASS=CHAR
,DEVCLASS=COMM
,DEVCLASS=CTC
,DEVCLASS=DASD
,DEVCLASS=DISP
,DEVCLASS=TAPE
,DEVCLASS=UREC

,DEVCID=devcid addr devcid addr: RS-type address
,DEVCID=0 Default: 0

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).
,IOCTOKEN=NONE Default: NONE

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM
,LINKAGE=BRANCH

UCBSCAN Macro

UCBSCAN — Scan UCBs 275

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 1

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the COPY function of the
UCBSCAN macro with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBSCAN macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply defaults for optional parameters that were not specified.

UCBSCAN ADDRESS

Syntax
The standard form of the ADDRESS function of the UCBSCAN macro is written as
follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN

� One or more blanks must follow UCBSCAN.

ADDRESS Note: COPY is the default.

,WORKAREA=workarea addr workarea addr: RX-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,UCBCXPTR=ucbcxptr addr ucbcxptr: RX-type address or register (2) - (12).

UCBSCAN Macro

276 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,UCBPXPTR=ucbpxptr addr ucbpxptr: RX-type address or register (2) - (12).

,LOC=BELOW Default : BELOW
,LOC=ANY

,PIN Note: TEXT and PTOKEN are required with PIN
,NOPIN

,TEXT=text addr: text addr: RX-type address
Note: Required with PIN, not valid with NOPIN.

,PTOKEN=ptoken addr: ptoken addr: RS-type address or register (2) - (12).
Note: Required with PIN, not valid with NOPIN.

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).
,UCBPAREA=NONE Default: NONE

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
,DEVN=0 Default: 0

,DYNAMIC=NO Default: NO
,DYNAMIC=YES

,RANGE=3DIGIT Default: 3DIGIT
,RANGE=ALL

,NONBASE=NO Default: NO
,NONBASE=YES

,UNBOUND_ALIAS=NO Default: NO
,UNBOUND_ALIAS=YES
,UNBOUND_ALIAS=ONLY

,DEVCLASS=ALL Default: ALL
,DEVCLASS=CHAR
,DEVCLASS=COMM
,DEVCLASS=CTC
,DEVCLASS=DASD
,DEVCLASS=DISP
,DEVCLASS=TAPE
,DEVCLASS=UREC

,DEVCID=devcid addr devcid addr: RS-type address

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).
,IOCTOKEN=NONE Default: NONE

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 1 - 2

UCBSCAN Macro

UCBSCAN — Scan UCBs 277

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

ADDRESS
Specifies that a UCB address is to be obtained.

,WORKAREA= workarea addr
Specifies the address of a 100-character work area that will be used by the
UCBSCAN service. The caller must initialize this work area to binary zeros
before starting a UCB scan. On subsequent invocations of UCBSCAN within the
same scan, the caller must leave the contents of this work area unchanged.

,UCBPTR=ucbptr addr
Specifies the address of a pointer in which the address of the UCB common
segment for the next UCB that meets the search criteria will be returned.

,UCBCXPTR=ucbcxptr addr
Specifies the address of a fullword field in which the system will return the
address of the UCB common extension. Use the IEFUCBOB mapping macro to
map the UCB common extension segment.

,UCBPXPTR=ucbpxptr addr
Specifies the address of a fullword field in which the system will return the
address of the UCB prefix extension. Use the IOSDUPFX mapping macro to
map the UCB prefix extension segment.

,LOC=BELOW
,LOC=ANY

Specifies whether the scan should be restricted to below 16 megabyte UCBs
(LOC=BELOW) or should also include above 16 megabyte UCBs (LOC=ANY).

,PIN
,NOPIN

Specifies whether the UCB is to be pinned to make it ineligible for deletion
through the dynamic UCB process. Pinning the UCB ensures that it will not be
deleted while the scan process is taking place. The PIN parameter specifies
that the UCB should be pinned, and NOPIN specifies that it should not.
Programs that pin a UCB are also responsible for unpinning it once the UCB is
no longer subject to processing. Use the UCBPIN macro with the UNPIN option
to unpin the UCB.

,TEXT=text addr
Specifies the address of a 58-character input field containing text that
documents the reason for the PIN request. If the pin request remains
outstanding during a request for a configuration change that would delete this
UCB, the text specified by the TEXT parameter will be displayed in a message
identifying the reason for a configuration change failure.

,PTOKEN=ptoken addr
Specifies the address of an 8-character area that is to receive the pin token for
the UCB. The caller must use the pin token when unpinning the UCB.

,UCBPAREA= ucbparea addr

UCBSCAN Macro

278 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,UCBPAREA=NONE
Specifies the address of a 48-character storage area that will receive a copy of
the UCB prefix extension segment. The area can be mapped by the IOSDUPI
mapping macro.

,DEVN=devn addr
,DEVN=0

Specifies (DEVN=devn addr) an input halfword that contains, in binary form, the
device number with which the scan is to begin. The default, DEVN=0, starts the
scan with the first UCB.

,DYNAMIC=NO
,DYNAMIC=YES

Specifies whether the scan should be restricted to static and installation-static
UCBs (DYNAMIC=NO) or should also include dynamic UCBs (DYNAMIC=YES).

,RANGE=3DIGIT
,RANGE=ALL

Specifies whether the scan should be restricted to UCBs with 3-digit device
numbers (3DIGIT) or should also include UCBs with 4-digit device numbers
(ALL).

,NONBASE=NO
,NONBASE=YES

Specifies whether the scan should include nonbase exposures for a
multiple-exposure device, which was supported prior to MVS/ESA SP 5.2. NO
specifies only the base exposure, and YES specifies all exposures.

Specifies whether the scan should include bound alias UCBs for a parallel
access volume. NO specifies that bound alias UCBs will not be included. YES
specifies that bound alias UCBs will be included.

,UNBOUND_ALIAS=NO
,UNBOUND_ALIAS=YES
,UNBOUND_ALIAS=ONLY

Specifies whether the scan should include unbound alias UCBs.

YES Include unbound alias UCBs

NO Do not include unbound alias UCBs

ONLY Include only unbound alias UCBs

Note: The UNBOUND_ALIAS function is intended for IOS use only.

,DEVCLASS=ALL
,DEVCLASS=CHAR
,DEVCLASS=COMM
,DEVCLASS=CTC
,DEVCLASS=DASD
,DEVCLASS=DISP
,DEVCLASS=TAPE
,DEVCLASS=UREC

Specifies the device class that is to be scanned:
ALL Scans UCBs for all device classes
CHAR Scans UCBs for character reader device class
COMM

Scans UCBs for communications device class
CTC Scans UCBs for channel to channel device class
DASD Scans UCBs for direct access device class
DISP Scans UCBs for display device class

UCBSCAN Macro

UCBSCAN — Scan UCBs 279

TAPE Scans UCBs for TAPE device class
UREC Scans UCBs for unit record device class

,DEVCID=devcid addr
Specifies an 8-bit input field used to supply the hexadecimal device class ID of
the device class to be scanned. devcid addr specifies the address of the field.

If you specify DEVCID, only UCBs of the particular device class specified will
be presented, and the DEVCLASS parameter is ignored.

,IOCTOKEN=ioctoken addr
,IOCTOKEN=NONE

Specifies the address of a 48-character area that contains the MVS I/O
configuration token that you supply to UCBSCAN. You can obtain this token by
issuing the IOCINFO macro, which is described in z/OS MVS Programming:
Assembler Services Reference ABE-HSP. If the I/O configuration token that is
current when UCBSCAN is invoked does not match the token whose address is
supplied as input by ioctoken addr, the caller will be notified through a return
code.

If the input IOCTOKEN (specified by ioctoken addr) is set to binary zeros,
UCBSCAN will set IOCTOKEN to the current I/O configuration token at the start
of the scan.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that should be generated:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

UCBSCAN Macro

280 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

v 1, if you use only the following parameters:

ADDRESS
DEVCID
DEVCLASS
DEVN
DYNAMIC
IOCTOKEN
LINKAGE

LOC
MF
NONBASE
NOPIN
PIN
PLISTVER
PTOKEN

RANGE
RETCODE
RSNCODE
TEXT
UCBPAREA
UCBPTR
WORKAREA

v 2, if you use any of the following parameters and parameters from plistver 1.

UCBCXPTR UCBPXPTR

To code , specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1 or 2

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code. The
return code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0.

Return and Reason Codes
When control returns from UCBSCAN, GPR 15 (and retcode addr, if you coded
RETCODE) contains one of the following return codes:

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: UCBSCAN completed successfully.

Action: None.

04 01 Meaning: UCBSCAN processing ended. All UCBs
that met the search criteria have been presented
to the caller. The value stored into the pointer for
UCBPTR is unchanged, and the caller-supplied
area specified in the WORKAREA parameter has
been reset to binary zeros.

Action: None.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.
Possibly the caller wrote over an area in the
parameter list; look for this error.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller’s parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

UCBSCAN Macro

UCBSCAN — Scan UCBs 281

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

08 04 Meaning: Program error. An error occurred in
referencing the caller-supplied area for the UCB
prefix extension segment data. This reason code
is valid only for callers using the UCBPAREA
parameter.

Action: Correct the UCBPAREA parameter.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 08 Meaning: Program error. An error occurred in
referencing the caller-supplied work area specified
in the WORKAREA parameter.

Action: Correct the WORKAREA parameter.

08 0A Meaning: Program error. An error occurred in
referencing the caller-supplied area for the pin
reason text (TEXT). This reason code is valid only
for callers using the TEXT parameter.

Action: Correct the TEXT parameter.

0C None Meaning: Environmental error. The I/O
configuration has changed, so that the I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the IOCTOKEN
parameter.

Action: Obtain the current I/O configuration token
by issuing an IOCINFO macro or by setting the
input IOCTOKEN parameter in the UCBINFO
macro to zero. Start the scan from the beginning.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

UCBSCAN ADDRESS—List Form
Use the list form of the UCBSCAN macro together with the execute form for
applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses for storing the parameters.

Syntax
This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative List Form Macros” on page 12 for further information.

The list form of the ADDRESS function of the UCBSCAN macro is written as
follows:

UCBSCAN Macro

282 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN

� One or more blanks must follow UCBSCAN.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 1 - 2

MF=(L,list addr) list addr: symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string.
MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the ADDRESS function of
the UCBSCAN macro with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBSCAN macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a doubleword
boundary.

UCBSCAN ADDRESS—Execute Form
Use the execute form of the UCBSCAN macro together with the list form for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the ADDRESS function of the UCBSCAN macro is written as
follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN Macro

UCBSCAN — Scan UCBs 283

UCBSCAN

� One or more blanks must follow UCBSCAN.

ADDRESS Note: COPY is the default.

,WORKAREA=workarea addr workarea addr: RX-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,UCBCXPTR=ucbcxptr addr ucbcxptr: RX-type address or register (2) - (12).

,UCBPXPTR=ucbpxptr addr ucbpxptr: RX-type address or register (2) - (12).

,LOC=BELOW Default : BELOW
,LOC=ANY

,PIN Note: TEXT and PTOKEN are required with PIN
,NOPIN

,TEXT=text addr: text addr: RX-type address
Note: Required with PIN, not valid with NOPIN.

,PTOKEN=ptoken addr: ptoken addr: RS-type address or register (2) - (12).
Note: Required with PIN, not valid with NOPIN.

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).
,UCBPAREA=NONE Default: NONE

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
,DEVN=0 Default: 0

,DYNAMIC=NO Default: NO
,DYNAMIC=YES

,RANGE=3DIGIT Default: 3DIGIT
,RANGE=ALL

,NONBASE=NO Default: NO
,NONBASE=YES

,UNBOUND_ALIAS=NO Default: NO
,UNBOUND_ALIAS=YES
,UNBOUND_ALIAS=ONLY

,DEVCLASS=ALL Default: ALL
,DEVCLASS=CHAR
,DEVCLASS=COMM
,DEVCLASS=CTC
,DEVCLASS=DASD
,DEVCLASS=DISP
,DEVCLASS=TAPE

UCBSCAN Macro

284 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,DEVCLASS=UREC

,DEVCID=devcid addr devcid addr: RS-type address

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).
,IOCTOKEN=NONE Default: NONE

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM
,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: IMPLIED_VERSION
,PLISTVER=plistver plistver: 1 - 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the ADDRESS function of
the UCBSCAN macro with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBSCAN macro.

The list addr parameter specifies the address of the storage area for the
parameter list. COMPLETE specifies that the system is to check for required
parameters and supply defaults for optional parameters that were not specified.

UCBSCAN Macro

UCBSCAN — Scan UCBs 285

UCBSCAN Macro

286 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

VSMLIST — List Virtual Storage Map

Description
The VSMLIST macro provides information about the allocation of virtual storage.
The information is returned in a work area that you specify. The format of the work
area is described under “Virtual Storage Management” in z/OS MVS Programming:
Authorized Assembler Services Guide.

The following information can be requested:

v The ranges of virtual storage allocated to the SQA, by subpool, and the free
space within those ranges

v The ranges of virtual storage allocated to the CSA, by subpool, and the free
space within those ranges

v The ranges of CSA space that are unallocated

v The ranges of virtual storage allocated to the LSQA in the current address space,
by subpool, and the free space within those ranges

v The ranges of virtual storage allocated to private area subpools, by TCB, and the
free space within those ranges

v The ranges of private area that are unallocated.

For detailed information about virtual storage subpools, see “Virtual Storage
Management” in z/OS MVS Programming: Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Minimum authorization : For LINKAGE=SYSTEM, problem state and PSW key 8-15.
For LINKAGE=BRANCH, supervisor state and PSW key 0.

Dispatchable unit mode : Task or SRB.
Cross memory mode : Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit. All addresses must be 31-bit addresses.
ASC mode : Primary.
Interrupt status : Enabled or disabled for I/O and external interrupts.
Locks : v For LINKAGE=SYSTEM, the caller may not hold a lock

higher than the local lock.
v For LINKAGE=BRANCH, see the LINKAGE parameter

description for locking requirements.
Control parameters : Must be in the primary address space. All input parameters,

except for the TCB, can reside above 16 megabytes if the
caller is running in 31-bit addressing mode. The TCB resides
below 16 megabytes.

Programming Requirements
All addresses are associated with the current address space.

You must set bytes 0-3 of the work area to zero before the first invocation of the
macro for a given request.

Restrictions
None.

© Copyright IBM Corp. 1988, 2002 287

Input Register Information
Before issuing the VSMLIST macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register Contents
13 Address of a standard 72-byte save area

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The VSMLIST macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede VSMLIST.

VSMLIST

� One or more blanks must follow VSMLIST.

SP=SQA
SP=CSA
SP=LSQA
SP=PVT
SP=sp list addr sp list addr: RX-type address or register (0), (2) - (12)

,WKAREA=(addr,length) addr: RX-type address or register (1) - (12)
length: Symbol, decimal digit, or register (0), (2) - (12).

VSMLIST Macro

288 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,TCB=(tcb addr) Default : TCB address in PSATOLD.
,TCB=(tcb addr,ALL) tcb addr: RX-type address or register (0), (2) - (12).
,TCB=(, ALL) Note : The TCB parameter is required only for SRB routines, if SP=PVT or

SP=sp list addr and the list contains private area subpools.

,SPACE=ALLOC Default : SPACE=ALLOC
,SPACE=FREE Note : SPACE=UNALLOC can be specified only for SP=CSA or SP=PVT.
,SPACE=UNALLOC

,LOC=24 Default : LOC=31
,LOC=31

,REAL31 Default : REAL31
,REAL64

,LINKAGE=SYSTEM Default : LINKAGE=SYSTEM
,LINKAGE=BRANCH

,PVTSP=ALL Default : PVTSP=ALL
,PVTSP=OWNED

Parameters
The parameters are explained as follows:

SP=SQA
SP=CSA
SP=LSQA
SP=PVT
SP=sp list addr

Specifies the storage areas for which information is requested. The following
subpools are listed for the specified storage areas:
v SQA: 226, 239, 245, 247, 248
v CSA: 227, 228, 231, 241
v LSQA: 205, 215, 225, 255
v PVT: 0-127, 129–132, 229, 230, 236, 237, 244, 249, 251, 252

GETMAIN/FREEMAIN/STORAGE processing translates the original subpool
numbers that were specified on the GETMAIN, FREEMAIN, or STORAGE
macros to different subpool numbers as shown below:

Original Subpool Number Translated Subpool Number
203-205 205
213-215 215
223-225 225
233-235, 253-255 255
0, 240, 250 0

VSMLIST reports the translated subpool numbers, not the original subpool
numbers. In addition, VSMLIST does not report incorrect subpool numbers
(subpool numbers greater than 255) or undefined subpool numbers.

VSMLIST Macro

VSMLIST — List Virtual Storage Map 289

|

If SP=sp list addr is specified, the user must supply the address of a subpool
list. The first halfword of the list contains the number of entries in the list. Each
of the following halfwords in the list contains a subpool number. If a valid
subpool number appears more than once in the subpool list, it is reported only
once.

,WKAREA=(addr,length)
Indicates the address and length of a user-supplied work area. The system
uses this work area to hold the parameter list, control information, and data that
is to be returned to the caller. The work area should begin on a word boundary
and be a minimum of 4K bytes in length.

You must set bytes 0-3 of this work area to zero before the first invocation of
VSMLIST for a specific request. See “Virtual Storage Management” in z/OS
MVS Programming: Authorized Assembler Services Guide for a description of
the work area.

,TCB=(tcb addr)
,TCB=(tcb addr,ALL)
,TCB=(,ALL)

Specifies the TCB associated with the virtual storage allocated to the private
area subpools. The TCB must be located in the currently addressable address
space. If ALL is specified, the storage associated with the TCB and all of its
subtasks is reported.

Notes:

1. If ALL is specified and the TCB is high in the task structure (for example,
the TCB for RCT), more than one region could be listed. The regions in the
private area are the RCT region, the V=V region, and the V=R region (for
V=R jobs).

2. The TCB resides in storage below 16 megabytes.

,SPACE=ALLOC
,SPACE=FREE
,SPACE=UNALLOC

Specifies whether allocated, allocated and free, or unallocated storage is to be
reported.

ALLOC indicates that the virtual addresses and lengths of blocks of storage
allocated to the specific area are to be listed.

FREE indicates that in addition to the information supplied by ALLOC, the
virtual addresses and lengths of free space within the allocated blocks are to be
listed.

UNALLOC indicates that the virtual addresses and lengths of unallocated blocks
of storage are to be listed. Both TCB and REAL are ignored when UNALLOC is
specified.

Note: An allocated block of storage is a block that is a multiple of 4K in size
and contains some storage that has been allocated via a GETMAIN or
STORAGE macro. The free storage is the storage within an allocated
block that has not been allocated via a GETMAIN or STORAGE macro.
An unallocated block of storage is a block that is a multiple of 4K in size
and contains no allocated storage.

,LOC=24
,LOC=31

Indicates whether information should be returned about virtual storage areas
residing above and below 16 megabytes or only those residing below 16

VSMLIST Macro

290 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

megabytes. If LOC=31 is specified, information is returned for all storage areas
below 2 gigabytes. If LOC=24 is specified, information is returned only for
storage areas below 16 megabytes.

Note: Specifying LOC=BELOW is the same as specifying LOC=24. Specifying
LOC=ANY is the same as specifying LOC=31. The old values are still
supported, but IBM recommends using the newer values instead.

,REAL31
,REAL64

Indicates that the high order bit of the address field of the allocated block
descriptor should be set to show the value specified on the LOC parameter of
the GETMAIN, STORAGE, or CPOOL macro invocation used to obtain that
storage area. If the storage block was allocated using any LOC specification of
GETMAIN or STORAGE except LOC=(,24), the indicator is turned on; if the
storage block was allocated using the LOC=(,24) parameter of the GETMAIN or
STORAGE macros, the indicator is turned off.

When REAL31 is specified
If the storage block is backed in real 31-bit or 64-bit storage, the high
bit indicator is on (one). If the storage block is backed in real 24-bit
storage, the high bit indicator is off (zero). The low bit indicator is
always off.

When REAL64 is specified
If the storage block is backed in real 64-bit storage, the low bit indicator
is on (one). If the storage block is backed in real 31-bit storage, the
high bit indicator is on (one). If the storage block is backed in real 24-bit
storage, both indicators are off.

When neither is specified
Both indicators remain off (zero).

Note: The REAL parameter is deprecated, but still supported by VSMLIST. It
has the same function as REAL31. IBM recommends using REAL31
instead.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Indicates whether the VSMLIST routine uses a PC instruction
(LINKAGE=SYSTEM) or branch entry (LINKAGE=BRANCH) for linkage and
whether the VSMLIST routine provides serialization and recovery.

If LINKAGE=SYSTEM is specified, the VSMLIST routine provides linkage using
a PC instruction and also provides recovery and serialization.

The caller’s secondary ASID is preserved when a PC is issued.

Note: Serialization is not provided across calls to VSMLIST.

If LINKAGE=BRANCH is specified, the VSMLIST routine uses branch entry for
linkage and does not provide recovery or serialization. Before issuing VSMLIST,
provide serialization as follows:

v For LSQA or PVT requests, obtain the LOCAL lock.

v For SQA or CSA requests, issue the SETLOCK macro right before and right
after the VSMLIST request, as follows:

SETLOCK OBTAIN,TYPE=VSMFIX,MODE=UNCOND
VSMLIST request
SETLOCK RELEASE,TYPE=VSMFIX

VSMLIST Macro

VSMLIST — List Virtual Storage Map 291

If your program is covered by a functional recovery routine (FRR) and the
FRR receives control after SETLOCK OBTAIN has been issued and before
SETLOCK RELEASE has been issued, your FRR must either issue
SETLOCK RELEASE,TYPE=VSMFIX or must issue the SETLOCK and
SETRP macros as follows:

SETLOCK TEST,TYPE=VSMFIX,BRANCH=(NOTHELD,NOVSMFIX)
SETRP FRELOCK=VSMFIX

NOVSMFIX DS 0H

Notes:

1. Your program will be disabled for I/O and external interrupts from the time
the SETLOCK OBTAIN completes until the SETLOCK RELEASE
completes. See the descriptions of the SETLOCK and SETRP macros for
additional usage information.

2. Your program and your FRR must not issue any of the following macros
before issuing SETLOCK RELEASE,TYPE=VSMFIX:
– GETMAIN
– FREEMAIN
– STORAGE

,PVTSP=ALL
,PVTSP=OWNED

Indicates for each task, which subpool information will be returned.

ALL indicates that information is returned for subpools which are owned or
shared by the task.

OWNED indicates that information is returned only for the subpools which are
owned by the task.

ABEND Codes
The VSMLIST macro might issue abend code X'C78'. For detailed abend code
information, see z/OS MVS System Codes.

Return and Reason Codes
When the VSMLIST macro returns control to your program, GPR 15 contains one of
the following hexadecimal return codes:

Table 39. Return Codes for the VSMLIST Macro

Return Code Meaning and Action

0 Meaning : Successful completion.

Action : None.

4 Meaning : Partially successful completion. More information remains to be
returned in the work area.

Action : Reissue the macro to obtain additional information until a return
code of 0 is returned in register 15. Do not change the value of bytes 0-3 of
the work area before reissuing the macro.

VSMLIST Macro

292 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 39. Return Codes for the VSMLIST Macro (continued)

Return Code Meaning and Action

8 Meaning : System error. The system encountered an error while scanning
virtual storage management data areas. The information in the data area is
valid, but incomplete. This return code is obtained only by users who specify
LINKAGE=SYSTEM.

Action : Notify system support personnel that there might be an error in
virtual storage management’s control structure. If there is a problem with
VSM’s control structure, the entire system will be adversely affected and you
might need to wait until the problem is identified and resolved by support
personnel. Support personnel should take a dump of the virtual storage
management control structure to help identify the cause of the problem. If
the problem appears to involve common storage, the contents of common
storage should be dumped to view the VSM control structure. If the problem
appears to involve private storage, private storage should be dumped.

C Meaning : Program error. The system detected one of the following errors:
v The work area was too small.
v An incorrect parameter was specified.
v Incorrect control information was in the work area.

This return code is obtained only by users who specify LINKAGE=BRANCH.
Users who specify LINKAGE=SYSTEM receive a X'C78' abend for these
errors.

Action : Ensure that the work area is at least 4096 bytes long. Verify that the
work area is correctly defined and initialized and that parameters are
specified properly. Verify that your program has not inadvertently modified
the VSMLIST work area.

Example 1
List the ranges of the allocated and free storage in the SQA. Specify the address of
the VSM work area in register 2 and the length of the work area in register 3.
VSMLIST SP=SQA,SPACE=FREE,WKAREA=((2),(3))

Example 2
List the ranges of the allocated storage in the CSA. Specify the address of the work
area in register 2 and the length of the work area in register 3. Provide branch entry
linkage.
VSMLIST SP=CSA,SPACE=ALLOC,WKAREA=((2),(3)),LINKAGE=BRANCH

Example 3
List the ranges of unallocated storage in the private area. The variable X contains
the address of the work area, which has a length of 4096 bytes.
VSMLIST SP=PVT,SPACE=UNALLOC,WKAREA=(X,4096)

Example 4
List the ranges of allocated storage, below 16 megabytes, in each of the subpools
specified in the subpool list at location Y. The variable X contains the address of the
work area, which has a length of 4096 bytes.
VSMLIST SP=Y,SPACE=ALLOC,WKAREA=(X,4096),LOC=BELOW

VSMLIST Macro

VSMLIST — List Virtual Storage Map 293

VSMLIST Macro

294 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

VSMLOC — Verify Virtual Storage Allocation

Description
The VSMLOC macro verifies that a given storage area has been allocated using the
GETMAIN or STORAGE macros.

Environment
The requirements for the caller are:

Minimum authorization : For LINKAGE=SYSTEM, problem state and PSW key 8-15.
For LINKAGE=BRANCH, supervisor state and PSW key 0.

Dispatchable unit mode : Task or SRB.
Cross memory mode : Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit. All addresses passed to VSMLOC must be

31-bit addresses.
ASC mode : Primary.
Interrupt status : For LINKAGE=SYSTEM, enabled or disabled for I/O and

external interrupts. For LINKAGE=BRANCH, interrupt status
depends on the area of storage for which information is
requested. See the LINKAGE=BRANCH parameter for
complete information.

Locks : v For LINKAGE=SYSTEM with LSQA, PVT, or CPOOLLCL
specified, you may hold only the local lock.

v For LINKAGE=BRANCH, see the LINKAGE=BRANCH
parameter for locking requirements.

Control parameters : Must be in the primary address space

Programming Requirements
v All addresses are associated with the current address space.

v The VSMLOC service does not provide serialization or recovery for callers
specifying LINKAGE=BRANCH. Callers must provide serialization and recovery
as described under the LINKAGE parameter description.

v The VSMLOC service provides serialization and recovery for callers specifying
LINKAGE=SYSTEM.

Restrictions
None.

Input Register Information for LINKAGE=SYSTEM
Before issuing the VSMLOC macro with LINKAGE=SYSTEM, the caller must
ensure that the following general purpose registers (GPRs) contain the specified
information:

Register Contents
13 Address of a standard 72-byte save area

Output Register Information for LINKAGE=SYSTEM
When control returns to the caller, the GPRs contain:

Register Contents
0 If GPR15 contains a value of zero, byte 3 contains the number of

© Copyright IBM Corp. 1988, 2002 295

the subpool from which the specified storage area was obtained.
Bytes 0-2 do not contain any relevant information.

If GPR15 contains a nonzero value, contains zero.
1 Used as a work register by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Return code.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Input Register Information for LINKAGE=BRANCH
Before issuing the VSMLOC macro with LINKAGE=BRANCH, the caller must
ensure that the following general purpose registers (GPRs) contain the following
information:

Register Contents
13 Address of a standard 72-byte save area

Output Register Information for LINKAGE=BRANCH
When control returns to the caller, the GPRs contain:

Register Contents
0 If GPR15 contains a value of 0, byte 3 contains the number of the

subpool from which the specified storage area was obtained. Bytes
0-2 do not contain any relevant information.

If GPR15 contains a nonzero value, contains zero.
1-2 Used as work registers by the system
3-13 Unchanged.
14 Used as a work register by the system.
15 Return code.

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The VSMLOC macro is written as follows:

VSMLOC Macro

296 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

name name: Symbol. Begin name in column 1.

� One or more blanks must precede VSMLOC.

VSMLOC

� One or more blanks must follow VSMLOC.

SQA
CSA
LSQA
PVT
CPOOLFIX
CPOOLPAG
CPOOLLCL

,AREA=(addr,length) addr: RX-type address or register (0) - (12).
length: Symbol, decimal digit or register (0), (2) - (12). Use only with SQA,
CSA, LSQA, and PVT.

,AREA=(addr) addr: RX-type address or register (0) - (12). Use only with CPOOLFIX,
CPOOLPAG, and CPOOLLCL.

,TCB=addr
addr: RX-type address or register (0) - (12). Can only be specified with PVT.

,LINKAGE=SYSTEM Default : LINKAGE=SYSTEM
,LINKAGE=BRANCH

Parameters
The parameters are explained as follows:

SQA
CSA
LSQA
PVT
CPOOLFIX
CPOOLPAG
CPOOLLCL

Used to verify that storage has been allocated.

SQA, CSA, LSQA, and PVT are used to verify that storage for SQA, CSA,
LSQA, or PVT (private area storage) has been allocated in the current address
space.

CPOOLFIX is used to verify that storage for a global fixed cell pool has been
allocated. Users who obtain their storage from subpool 226, 227, 228, 239, or
245 should specify this keyword.

VSMLOC Macro

VSMLOC — Verify Virtual Storage Allocation 297

CPOOLPAG is used to verify that storage for a global pageable cell pool has
been allocated. Users who obtain storage from subpool 231, 241, 247, or 248
should specify this keyword.

CPOOLLCL is used to verify that storage for a local cell pool has been
allocated. Users who obtain storage from subpool 0-127, 129-132, 203-205,
213-215, 223-225, 229, 230, 233-237, 240, 249, or 250-255 should specify this
keyword.

,AREA=(addr,length)
Indicates the start of the virtual storage area (addr) and the length of the virtual
storage area (length) to be verified.

,AREA=(addr)
Indicates the start of the virtual storage area (addr) to be verified.

,TCB=addr
Indicates that VSMLOC is to place the address of the TCB associated with the
verified storage in the register or storage area specified by the TCB parameter.
If the return code from VSMLOC is not zero, the register or storage area
specified by the TCB parameter is set to zero. The TCB parameter can be
specified only with PVT.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Indicates the type of linkage that VSMLOC is to use.

If LINKAGE=SYSTEM is specified, the VSMLOC routine uses a basic PC
instruction for linkage.

The caller’s secondary ASID is preserved when a basic PC is issued.

If LINKAGE=BRANCH is specified, the VSMLOC routine uses branch entry
linkage. Before issuing VSMLOC, provide serialization as follows:

v For LSQA, CPOOLLCL, and PVT requests, obtain the LOCAL lock.

v For CSA, SQA, and CPOOLFIX requests, issue the SETLOCK macro right
before and right after the VSMLOC request, as follows:
SETLOCK OBTAIN,TYPE=VSMFIX,MODE=UNCOND
VSMLOC request
SETLOCK RELEASE,TYPE=VSMFIX

If your program is covered by a functional recovery routine (FRR) and the
FRR receives control after SETLOCK OBTAIN has been issued and before
SETLOCK RELEASE has been issued, your FRR must either issue
SETLOCK RELEASE,TYPE=VSMFIX or must issue the SETLOCK and
SETRP macros as follows:

SETLOCK TEST,TYPE=VSMFIX,BRANCH=(NOTHELD,NOVSMFIX)
SETRP FRELOCK=VSMFIX

NOVSMFIX DS 0H

Notes:

1. Your program will be disabled for I/O and external interrupts from the time
the SETLOCK OBTAIN completes until the SETLOCK RELEASE
completes. See the descriptions of the SETLOCK and SETRP macros for
additional usage information.

2. Your program and your FRR must not issue any of the following macros
before issuing SETLOCK RELEASE,TYPE=VSMFIX:
– GETMAIN
– FREEMAIN
– STORAGE

VSMLOC Macro

298 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

v For CPOOLPAG requests, issue the SETLOCK macro right before and right
after the VSMLOC request, as follows:
SETLOCK OBTAIN,TYPE=VSMPAG,MODE=UNCOND
VSMLOC request
SETLOCK RELEASE,TYPE=VSMPAG

If your program is covered by a functional recovery routine (FRR) and the
FRR receives control after SETLOCK OBTAIN has been issued and before
SETLOCK RELEASE has been issued, your FRR must either issue
SETLOCK RELEASE,TYPE=VSMPAG or must issue SETLOCK and SETRP
macros as follows:

SETLOCK TEST,TYPE=VSMPAG,BRANCH=(NOTHELD,NOVSMPAG)
SETRP FRELOCK=VSMPAG

NOVSMPAG DS 0H

Notes:

1. Your program will be disabled for I/O and external interrupts from the time
the SETLOCK OBTAIN completes until the SETLOCK RELEASE
completes. See the descriptions of the SETLOCK and SETRP macros for
additional usage information.

2. Your program and your FRR must not issue any of the following macros
before issuing SETLOCK RELEASE,TYPE=VSMPAG:
– GETMAIN
– FREEMAIN
– STORAGE

ABEND Codes
The VSMLOC macro might issue abend code X'C78'. For detailed abend code
information, see z/OS MVS System Codes.

Return and Reason Codes
When the VSMLOC macro returns control to your program, GPR 15 contains one of
the following hexadecimal return codes:

Table 40. Return Codes for the VSMLOC Macro

Return Code Meaning and Action

0 Meaning : Successful completion. The specified virtual storage area is
allocated.

Action : None.

4 Meaning : Possible program error. The specified virtual storage area is:
v Not allocated.
v Overlaps free space.
v Overlaps other subpools.

Action : This return code is not a program error if you have issued VSMLOC
to determine whether the storage at the specified address is currently
allocated and the system indicates that it is not. This return code signifies a
program error if you expected the specified storage area to be allocated and
the system reports one of the conditions listed above. If this is an error, you
need to determine why the storage area is in the indicated state. Possible
reasons include:
v The storage area address or length is not valid.
v The storage has been freed by another program.
v The storage was in a subpool that is automatically freed by the system

and the system has freed the storage.

VSMLOC Macro

VSMLOC — Verify Virtual Storage Allocation 299

Table 40. Return Codes for the VSMLOC Macro (continued)

Return Code Meaning and Action

8 Meaning : System error. The system encountered an error while scanning
virtual storage management data areas. This return code is obtained only by
users who specify LINKAGE=SYSTEM.

Action : Notify system support personnel that there might be an error in
virtual storage management’s control structure. If there is a problem with
VSM’s control structure, the entire system will be adversely affected and you
might have to wait until the problem is identified and resolved. System
support personnel should request a dump of the virtual storage
management control structure and contact IBM support. If the problem
appears to involve common storage, the contents of common storage
should be dumped to view the VSM control structure. If the problem appears
to involve private storage, private storage should be dumped.

C Meaning : Program error. You have specified a parameter incorrectly. This
return code is obtained only by users who specify LINKAGE=BRANCH.
Users who specify LINKAGE=SYSTEM receive a X'C78' abend for this error.

Action : Ensure that the virtual storage area you have specified does not
exceed 2 gigabytes. Verify that you have coded the parameters as required.

10 Meaning : System error. Internal system error.

Action : Record the return code and notify IBM support personnel.

Example 1
Verify that the virtual storage, starting at the address given in register 2 and having
a length specified in register 3, has been allocated in the SQA.
VSMLOC SQA,AREA=((2),(3))

Example 2
Verify that the 8-bytes of virtual storage starting at X have been allocated in the
CSA. Use a PC instruction for linkage and let VSMLOC provide recovery and
serialization.
VSMLOC CSA,AREA=(X,8),LINKAGE=SYSTEM

Example 3
Verify that the 8-bytes of virtual storage starting at the address specified in register
2 have been allocated in the LSQA. Use branch entry for linkage.
VSMLOC LSQA,AREA=((2),8),LINKAGE=BRANCH

Example 4
Verify that the virtual storage, starting at X and having a length specified in register
3, has been allocated in private area storage. Use branch entry for linkage.
VSMLOC PVT,AREA=(X,(3)),LINKAGE=BRANCH

Example 5
Verify that the 100 bytes of virtual storage starting at the address specified in
register 1 have been allocated in private area storage. The address of the TCB
associated with the storage verified is returned in register 4.
VSMLOC PVT,AREA=((1),100),TCB=(4),LINKAGE=BRANCH

VSMLOC Macro

300 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

VSMREGN — Obtain Private Area Region Size

Description
The VSMREGN macro provides the virtual starting address and sizes of the private
area user regions associated with a given TCB in the current address space. For
more information about the user region, see z/OS MVS Initialization and Tuning
Guide.

Environment
The requirements for the caller are:

Minimum authorization : Problem state and PSW key 8-15.
Dispatchable unit mode : Task or SRB.
Cross memory mode : Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit.

All addresses passed to VSMREGN must be 31-bit addresses.
ASC mode : Primary.
Interrupt status : Enabled or disabled for I/O and external interrupts.
Locks : v If obtaining user region information for the currently active

task by specifying its TCB address or by taking the default
value for the TCB keyword, the caller is not required to
hold any locks.

v Otherwise, the caller must hold the local lock of the
currently addressable address space.

Control parameters : Must be in the primary address space. All input parameters
except for the TCB address can reside above 16 megabytes
if the caller is running in 31-bit addressing mode. The TCB
resides below 16 megabytes.

Programming Requirements
None.

Restrictions
None.

Input Register Information
Before issuing the VSMREGN macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 72-byte save area

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

© Copyright IBM Corp. 1988, 2002 301

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The VSMREGN macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede VSMREGN.

VSMREGN

� One or more blanks must follow VSMREGN.

WKAREA=addr addr: RX-type address or register (0) - (12).

,TCB=tcb addr tcb addr: RX-type address or register (0), (2) - (12).
Default : (except for SRB routines) TCB address in PSATOLD.

Parameters
The parameters are explained as follows:

WKAREA= addr
Indicates the virtual address of a 16-byte work area, which is used by
VSMREGN to return the requested information. The format of the work area is:

Bytes Meaning
0-3 Virtual address of the region below 16 megabytes
4-7 Length of the region below 16 megabytes
8-11 Virtual address of the region above 16 megabytes

12-15 Length of the region above 16 megabytes

,TCB=tcb addr
Indicates the virtual address of the TCB to be used to identify the region (the
region control task (RCT) region, the V=V region, or the V=R region). SRB

VSMREGN Macro

302 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

routines and routines whose currently addressable address space is not the
home address space must specify the TCB operand. They cannot use the
default value.

ABEND Codes
None.

Return and Reason Codes
When control returns from VSMREGN, GPR 15 always contains a return code of
zero, indicating successful completion.

Example 1
Find the virtual address and length of the private area of the TCB whose address is
in PSATOLD. Return the information in the work area whose address is given in
register 2.
VSMREGN WKAREA=(2)

Example 2
Find the virtual address and length of the private area of the TCB specified in
register 3. Return this information in the work area whose address is given in
register 2.
VSMREGN WKAREA=(2),TCB=(3)

Example 3
Find the virtual address and length of the private area of the TCB whose address is
X. Return this information in the work area whose address is given in register 2.
VSMREGN WKAREA=(2),TCB=X

Example 4
Find the virtual address and length of the private area of the TCB whose address is
given in register 3. Return this information in the work area whose address is X.
VSMREGN WKAREA=X,TCB=(3)

VSMREGN Macro

VSMREGN — Obtain Private Area Region Size 303

VSMREGN Macro

304 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

WAIT — Wait for One or More Events

Description
The WAIT macro is used to tell the system that performance of the active task
cannot continue until one or more specific events, each represented by a different
event control block (ECB), have occurred. Bit 0 and bit 1 of each ECB must be set
to zero before it is used.

The system takes the following action:

v For each event that has already occurred (each ECB is already posted), the
count of the number of events is decreased by one.

v If the number of events is zero by the time the last event control block is
checked, control is returned to the instruction following the WAIT macro.

v If the number of events is not zero by the time the last ECB is checked, control is
not returned to the issuing program until sufficient ECBs are posted to bring the
number to zero. Control is then returned to the instruction following the WAIT
macro.

See z/OS MVS Programming: Authorized Assembler Services Guide for information
on how to use the WAIT macro to serialize resources.

Environment
The requirements for callers of WAIT are:

Minimum authorization : Supervisor state or problem state, with any PSW key
Dispatchable unit mode : Task
Cross memory mode : One of the following:

v For LINKAGE=SVC: PASN=HASN=SASN
v For LINKAGE=SYSTEM: PASN=HASN=SASN or

PASN¬=HASN¬=SASN
AMODE: 24- or 31- or 64-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interruptions
Locks : v For LINKAGE=SYSTEM: No locks held

v For LINKAGE=SVC: No locks held, and no enabled
unlocked task (EUT) functional recovery routines (FRR)
established

Control parameters : ECB and ECBLIST must be in the home address space.

Programming Requirements
None.

Restrictions
When using LINKAGE=SVC (the default), the caller cannot have an EUT FRR
established.

Input Register Information
Before issuing the WAIT macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

© Copyright IBM Corp. 1988, 2002 305

|
|

Output Register Information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 One of the following:

v For LINKAGE=SYSTEM: Used as work registers by the system
v For LINKAGE=SVC: Unchanged

When control returns to the caller, the access registers (AR) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Performance Implications
None.

Syntax
The WAIT macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WAIT.

WAIT

� One or more blanks must follow WAIT.

event nmbr, event nmbr: Symbol, decimal digit, or register (0) or (2) - (12).
Default : 1
Value range : 0-255

ECB=ecb addr ecb addr: RX-type address, or register (1) or (2) - (12).
ECBLIST=ecb list addr ecb list addr: RX-type address, or register (1) or (2) - (12).

,LONG=NO Default : LONG=NO
,LONG=YES

WAIT Macro

306 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,LINKAGE=SVC Default : LINKAGE=SVC
,LINKAGE=SYSTEM

,EUT=NOSAVE Default : EUT=NOSAVE
,EUT=SAVE

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

event nmbr,
Specifies the number of events waiting to occur.

ECB=ecb addr
ECBLIST=ecb list addr

Specifies the address of an ECB on a fullword boundary or the address of a
virtual storage area containing one or more consecutive fullwords on a fullword
boundary. Each fullword contains the address of an ECB; the high order bit in
the last fullword must be set to one to indicate the end of the list.

The ECB parameter is valid only if the number of events is specified as one or
is omitted. The number of ECBs in the list specified by the ECBLIST form must
be equal to or greater than the specified number of events.

If you specify ECBLIST, ecb list addr and all ECBs on the list must be in the
home address space.

,LONG=NO
,LONG=YES

Specifies whether the task is entering a long wait (YES) or a regular wait (NO).

,LINKAGE=SVC
,LINKAGE=SYSTEM

Specifies whether the caller is in cross memory mode (LINKAGE=SYSTEM) or
not (LINKAGE=SVC).

When the caller is not in cross memory mode (the primary, secondary, and
home address spaces are the same), use LINKAGE=SVC. With this parameter,
linkage is through an SVC instruction.

When the caller is in cross memory mode (the primary, secondary, and home
address spaces are not the same), use LINKAGE=SYSTEM. With this
parameter, linkage is through a PC instruction. Note that the ECB must be in
the home address space.

,EUT=NOSAVE
,EUT=SAVE

Specifies whether enabled unlocked task (EUT) FRRs, if present, should be
preserved around the WAIT processing. Specify this keyword only if you specify
LINKAGE=SYSTEM.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or

WAIT Macro

WAIT — Wait for One or More Events 307

services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

The RELATED parameter is available on macros that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE),
and on macros that relate to previous occurrences of the same macros (for
example, CHAP and ESTAE).

The RELATED parameter may be used, for example, as follows:
WAIT1 WAIT 1,ECB=ECB,RELATED=(RESUME1,

’WAIT FOR EVENT’)
.
.
.

RESUME1 POST ECB,0,RELATED=(WAIT1,
’RESUME WAITER’)

Note: Each of these macros will fit on one line when coded, so there is no
need for a continuation indicator.

CAUTION:
A job step with all of its tasks in a WAIT condition is terminated upon
expiration of the time limits that apply to it.

Example
You have previously initiated one or more activities to be completed asynchronously
to your processing. As each activity was initiated, you set up an ECB in which bits 0
and 1 were set to zero. You now wish to suspend your task via the WAIT macro
until a specified number of these activities have been completed.

Completion of each activity must be made known to the system via the POST
macro. POST causes an addressed ECB to be marked complete. If completion of
the event satisfies the requirements of an outstanding WAIT, the waiting task is
marked ready and will be executed when its priority allows.

ABEND Codes
The caller of WAIT might encounter one of the following abend codes:

101
201
301
401

See z/OS MVS System Codes for explanations and responses for these codes.

Return and Reason Codes
None.

Example 1
Wait for one event to occur (with a default count).

WAIT ECB=WAITECB
.
.

WAITECB DC F’0’

WAIT Macro

308 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Example 2
Wait for two events to occur.

WAIT 2,ECBLIST=LISTECBS
.
.

LISTECBS DC A(ECB1)
DC A(ECB2)
DC X’80’
DC AL3(ECB3)

Example 3
Enter a long wait for a task.

WAIT 1,ECBLIST=LISTECBS,LONG=YES
.
.
.

LISTECBS DC A(ECB1)
DC A(ECB2)
DC X’80’
DC AL3(ECB3)

WAIT Macro

WAIT — Wait for One or More Events 309

WAIT Macro

310 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

WTL — Write To Log

Description

Note: IBM recommends that you use the WTO macro with the
MCSFLAG=HRDCPY parameter instead of WTL, because WTO supplies
more data than WTL.

The WTL macro causes a message to be written to the system log (SYSLOG) or
the operations log (OPERLOG) log stream depending on which one of these logs,
or both, is active. The message can include any character that can be used in a
C-type (character) DC statement, and is assembled as a variable-length record.

Note: When a message is recorded in SYSLOG, the exact format of the output of
the WTL macro varies depending on the job entry subsystem (JES2 or
JES3) that is being used, the output class that is assigned to the log at
system initialization, and whether DLOG is in effect for JES3. See the z/OS
MVS System Messages manuals for information on the format of logged
messages.

z/OS JES3 Commands also contains information about the format of logged
messages.

The description of the WTL macro follows. The WTL macro is also described in
z/OS MVS Programming: Assembler Services Reference ABE-HSP (with the
exception of the OPTION parameter).

Environment
The requirements for the caller are:

Minimum authorization : Problem state and any PSW key. For OPTION,
APF-authorized with PSW key 0-7, or supervisor state

Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : Must be in the primary address space

Programming Requirements
None.

Restrictions
Message text cannot exceed 126 characters. If the message text exceeds 126
characters, truncation occurs at the last embedded blank before the 126th
character; when there are no embedded blanks, truncation occurs after the 126th
character.

© Copyright IBM Corp. 1988, 2002 311

Input Register Information
Before issuing the WTL macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1-14 Unchanged
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The standard form of the WTL macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTL.

WTL

� One or more blanks must follow WTL.

‘msg’ msg: Up to 126 characters if OPTION=NOPREFIX is specified. Up to 128
characters if OPTION=PREFIX is specified.

,OPTION=PREFIX Default : OPTION=NOPREFIX
,OPTION=NOPREFIX

WTL Macro

312 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Parameters
The parameters are explained as follows:

‘msg’
Specifies the message to be written to the system log and/or the operations log.
The message must be enclosed in apostrophes, which will not appear in the
log. The message can include any character that can be used in a C-type
(character) DC statement, and is assembled as a variable-length record. See
“Timing and Communication” in z/OS MVS Programming: Assembler Services
Guide for a list of the printable EBCDIC characters passed to display devices or
printers.

,OPTION=PREFIX
,OPTION=NOPREFIX

Specifies whether the WTL text contains a prefix identifying the system log
record. If PREFIX is specified, the text already contains a prefix. If NOPREFIX
is specified or if this parameter is omitted, a two-character prefix will be added
by the system. The OPTION keyword is ignored by any program running in the
JES3 primary address space.

ABEND Codes
None.

Return and Reason Codes
When the WTL macro returns control to your program, GPR 15 contains a
hexadecimal return code and GPR 0 contains a hexadecimal reason code. WTL
issues a return code (either 00 or 04), with multiple reason codes for each. The
return codes indicate the following:

v 00 - WTL wrote the message to the system log, the operations log, or both.

v 04 - WTL could not write the message to either the system log or the operations
log.

Table 41. Return and Reason Codes for the WTL Macro

Return Code Reason Code Meaning and Action

00 00 Meaning : WTL processing completed successfully. The
system logged the message in SYSLOG, and if OPERLOG
was requested, the system logged the message in
OPERLOG.

Action : None.

00 04 Meaning : WTL processing completed successfully. The
message was logged in the operations log (OPERLOG
logstream). The system log was not active.

Action : If you want the message logged in the system log,
start the system log and rerun the program.

00 08 Meaning : WTL processing completed, but the message was
only logged in the operations log because the WTL system
log buffers are full.

Action : Do one of the following, if you want subsequent
messages logged in the system log:
v Enter a CONTROL M,LOGLIM command to change the

allocated number of WTL system log buffers dynamically.
v Change the LOGLIM value specifying the number of WTL

system log buffers on the INIT statement in the
CONSOLxx parmlib member. This value will take effect at
the next IPL.

WTL Macro

WTL — Write To Log 313

Table 41. Return and Reason Codes for the WTL Macro (continued)

Return Code Reason Code Meaning and Action

00 0C Meaning : WTL processing completed, but the message was
only logged in the system log because the operations log
was not active.

Action : If you want the message logged in the operations
log, start the operations log and rerun the program. This will
also place the message in the system log.

00 10 Meaning : WTL processing completed, but the message was
only logged in the system log. The message was not logged
in the operations log stream because of a storage problem.

Action : If you want the message logged in the operations
log, retry the request. This will also place the message in
the system log. If the problem persists, contact the IBM
Support Center. Provide the return and reason code.

04 04 Meaning : System error. WTL processing was not
successful. Recovery could not be established.

Action : Retry the request. If the problem persists, record
the return and reason code and supply it to the appropriate
IBM support personnel.

04 08 Meaning : Environmental error. The system log and the
operations log are not active.

Action : Start the logs and rerun your program.

04 0C Meaning : Environmental error. The WTL limit has been
reached.

Action : Do one of the following:

1. Retry the request when the shortage is relieved.

2. Issue a CONTROL M,LOGLIM command to change the
allocated number of WTL SYSLOG buffers.

3. Change the LOGLIM value on the INIT statement in the
CONSOLxx member of SYS1.PARMLIB. This new value
will take effect at the next IPL.

Note: If the problem is persistent, you might want to
perform step 2 first and step 3 at the next IPL.

04 10 Meaning : System error. An internal error occurred. The
system issues message IEE390I.

Action : Contact the IBM Support Center. Provide the return
and reason code.

04 14 Meaning : System error. The system encountered a (VSM)
error. The system issues message IEE390I.

Action : Contact the IBM Support Center. Provide the return
and reason code.

04 18 Meaning : Environmental error. The message was not
logged in either the system log or the operations log,
because neither log is active.

Action : Do one of the following:
v If you want to log the message in the operations log,

start the operations log with the VARY
OPERLOG,HARDCPY command and rerun the program.

v If you want the message logged in the system log, start
the system log (SYSLOG) with the VARY
SYSLOG,HARDCPY command and rerun the program.

WTL Macro

314 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 41. Return and Reason Codes for the WTL Macro (continued)

Return Code Reason Code Meaning and Action

04 1C Meaning : Environmental error. The message was not
logged in the system log, as requested, because the WTL
limit has been reached. The operation log was not active at
the time, so the message was not logged there either.

Action : To log the message in the system log, do the
following:
v Retry the request when the storage shortage has been

relieved.
v Issue a CONTROL M,LOGLIM command to change the

allocated number of WTL SYSLOG buffers.
v Change the LOGLIM value on the INIT statement in the

CONSOLxx member of SYS1.PARMLIB. This new value
will take effect at initialization.

If the problem persists, issue the CONTROL M,LOGLIM
command first, and change the LOGLIM value in
CONSOLxx at your next IPL.

To log the message in the operations log, start the
operations log and rerun the program.

04 20 Meaning : Environment error. The message was not logged
in the operations log, as requested, because of storage
problems. The system log was not active.

Action : To log the message in the operations log, retry the
request. If the problem persists, contact the IBM Support
Center, providing the return and reason codes.

To log the message in the system log also, start the system
log and rerun the program.

04 24 Meaning : Environment error. The message was not logged
in the system log because the WTL limit has been reached,
and was not logged in the operation log because of storage
problems.

Action : To log the message in the operations log, retry the
request. If the problem persists, contact the IBM Support
Center, providing the return and reason codes.

To log the message in the system log also, start the system
log and rerun the program.

Example 1
Write a message to the system log.
WTL ’THIS IS THE STANDARD FORMAT FOR THE WTL MACRO’

Example 2
Write a message to the system log specifying a prefix to identify the system log
record.
WTL ’QL THIS FORMAT OF THE WTL USES THE OPTION KEYWORD’,OPTION=PREFIX

Example 3
Build a parameter list for a message to be written to the system log.
LOGMSG WTL ’FUNCTION XXX COMPLETE’,MF=L

WTL Macro

WTL — Write To Log 315

Example 4
Write a message constructed in the list form of WTL.
WTL MF=(E,LOGMSG)

WTL—List Form
The list form of the WTL macro is used to construct a control program parameter
list. The message parameter must be provided in the list form of the macro. The
OPTION keyword is not permitted on the list form of the WTL macro.

Syntax
The list form of the WTL macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTL.

WTL

� One or more blanks must follow WTL.

‘msg’ msg: Up to 126 characters.

,MF=L

Parameters
The parameters are explained under the standard form of the WTL macro with the
following exception:

,MF=L
Specifies the list form of the WTL macro.

WTL—Execute Form
The execute form of the WTL macro uses a remote control program parameter list.
The parameter list can be generated by the list form of WTL. You cannot modify the
message in the execute form.

Syntax
The execute form of the WTL macro is written as follows:

name name: Symbol. Begin name in column 1.

WTL Macro

316 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

� One or more blanks must precede WTL.

WTL

� One or more blanks must follow WTL.

MF=(E,list addr) list addr: RX-type address, or register (1) or (2) - (12).

,OPTION=PREFIX Default : OPTION=NOPREFIX
,OPTION=NOPREFIX

Parameters
The parameters are explained under the standard form of the WTL macro with the
following exception:

MF=(E,list addr)
Specifies the execute form of the WTL macro.

list addr is the name of a storage area to contain the parameters.

WTL Macro

WTL — Write To Log 317

WTL Macro

318 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

WTO — Write to Operator

Description
Use the WTO macro to write a message to one or more operator consoles. See the
section on communication in z/OS MVS Programming: Authorized Assembler
Services Guide for more information on using WTO. z/OS MVS Programming:
Assembler Services Reference ABE-HSP also contains information on WTO, with
the exception of the AREAID, MSGTYP, CONNECT, SYSNAME, JOBID,
JOBNAME, LINKAGE, SYNCH, and WSPARM parameters.

Environment
If you code LINKAGE=SVC , the requirements for the caller are:

Minimum authorization : One of the following, depending on the parameters you
code:

v Problem state and any key.

v If you code the AREAID, MSGTYP, CONNECT,
SYSNAME, JOBID, and JOBNAME parameters, one of
the following:
– Supervisor state with PSW key 0-7
– APF-authorized

Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : Must be in the primary address space.

If you code LINKAGE=BRANCH , the requirements for the caller are:

Minimum authorization : One of the following, depending on the parameters you
code:

v Supervisor state and PSW key 0 - 7.

v If you code the WSPARM parameter, supervisor state with
PSW key 0.

Dispatchable unit mode : Task or SRB.
Cross memory mode : Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled or disabled for I/O and external interrupts
Locks : The caller may hold locks, but is not required to hold any.
Control parameters : Must be in the primary address space.

Programming Requirements
Be aware of the following when coding the WTO macro:

v You must clear register 0 except under the following circumstances:

– You are using register 0 to pass a 1-byte console ID with MCSFLAG=REG0.
However, IBM recommends using the CONSID parameter rather than register
0.

© Copyright IBM Corp. 1988, 2002 319

– You are using register 0 to pass a message identifier to connect multiple-line
messages. However, IBM recommends using the CONNECT parameter rather
than register 0.

v If the caller is disabled or issues WTO with the WSPARM parameter, the WTO
and LOADWAIT parameter lists must be in fixed storage.

v When using any parameter with an address, the data being referenced must be
accessible by the caller issuing the WTO.

v If the list and execute forms of the WTO macro are in separate modules, both
modules must be assembled or compiled with the same level of WTO.

v When you’re coding a reentrant program, make sure the WTO parameter list is
generated correctly. To ensure this, you must code the same parameters on both
forms, only when you code one or more of the following parameters:
– TEXT=(text addr)
– CONNECT
– CONSID
– CONSNAME
– SYSNAME
– CART
– KEY
– TOKEN
– JOBNAME
– JOBID
– LINKAGE
– WSPARM

On the list form, code only the parameter and the equal sign; do not code a
parameter value as well. For example:
WTO ’text’,CONSID=,MF=L

If you specify parameter values on the list form, the system issues an MNOTE
and ignores the data.

v For any WTO parameters that allow a register specification, the value must be
right-justified in the register.

v If WSPARM is not equal to zero, the wait state is loaded whether or not the
message could be displayed or queued for hardcopy.

v If you specify the TEXT keyword for a multi-line WTO on the list form, you must
omit text addr for each line, but include line type. If you specify text addr, the
system ignores the data and issues an MNOTE. On the execute form, omit line
type for each line, but include text addr.

Restrictions
v If an SRB-mode caller issues WTO without the JOBID or JOBNAME parameter,

the WTO message will not have a job ID or jobname associated with it.

v You should issue a synchronous message only in serious system emergencies.

v There are two ways for authorized callers (supervisor state with PSW key 0-7) to
issue multiple-line messages:

1. You can issue a multiple-line WTO message of up to 255 lines with one WTO
macro. If you are coding more than one multiple-line message, and you want
to connect the messages, you must ensure that the left-most three bytes of
register 0 are set correctly:

– For the first request (of up to 255 lines), these three bytes must be zero.

WTO Macro

320 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

– For subsequent requests, register 0 can contain the message identifier
that the WTO service routine returns in register 1 after the first request.
Note that you must left-justify the 8-bit identifier when you load it into
register 0.

– A WTO message with ROUTCDE=11 is sent to the JES2 system message
dataset (SYSMSG) unless LINKAGE=BRANCH is specified. In this case,
the message is not sent. If you want the WTO to go to SYSMSG, use
LINKAGE=SVC with ROUTCDE=11. Whether you issue
LINKAGE=BRANCH or LINKAGE=SVC with ROUTCDE=11, the message
appears in the JES2 joblog.

2. The CONNECT parameter provides a way to connect multiple-line WTO
messages. Therefore, an authorized caller actually can issue connect
messages that total more than 255 lines.

v The caller cannot have an EUT FRR established.

v When using the LINKAGE=BRANCH parameter, the system does not
automatically delete a WTO issued by a caller in SRB mode. A caller in SRB
mode must issue the DOM macro to explicitly delete any action message when
the calling program ends.

v If you specify LINKAGE=BRANCH, WTO ignores any data in register 0.
Therefore, if you are connecting lines of a multi-line WTO, and you specified
LINKAGE=BRANCH, you cannot put the CONNECT ID in register 0. You must
use the CONNECT keyword.

Input Register Information
Before issuing the WTO macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Used as a work register by the system, unless WTO returns code

X'20' in register 15. In that case, register 0 contains the number of
active WTO buffers for the issuer’s address space.

1 Message identification number if the macro completed normally. You
can use this number to delete the message when it is no longer
needed. If you are using the CONNECT parameter to connect WTO
messages, store this value in the 4-byte CONNECT field and set
register 1 to zero before issuing the next WTO. Otherwise, register
1 is used as a work register by the system.

2-13 Unchanged.
14 Used as a work register by the system.
15 Return code.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

WTO Macro

WTO — Write to Operator 321

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
Users who cannot wait because of a WTO buffer shortage should use the
MCSFLAG=BUSYEXIT parameter and then take appropriate action on the busy
return.

SYNCH=YES causes the calling program to display the message, become disabled,
and receive the reply synchronously.

Syntax
The standard form of the WTO macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTO.

WTO

� One or more blanks must follow WTO.

‘msg’ msg: Up to 126 characters.
(‘text’) text: Up to 126 characters.
(‘text’,line type) text addr: RX-type address or register (2) - (12).
(‘text’,line type) Note: If you code ‘msg’ or (‘text’...), it must be the first parameter you code.
(‘text’,line type)
TEXT=(text addr)
TEXT=(text addr,line type)
TEXT=((text addr,line type),...(text
addr,line type))

The permissible line types, text lengths, and maximum numbers of each line
type are shown below:

line type text maximum number
C 35 char 1 C type
L 71 char 2 L type
D 71 char 255 D type
DE 71 char 1 DE type

or
E None 1 E type

The maximum total number of lines that can be coded in one instruction is
255.

,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 128. The routing code is one or more
codes, separated by commas, or a hyphen to indicate a range.

WTO Macro

322 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,DESC=(descriptor code) descriptor code: Decimal digit from 1 to 13. The descriptor code is one or
more codes, separated by commas.

,AREAID=id char id char: Alphabetic character A - J, Z.

,MSGTYP=(msg type) msg type: Any of the following
N SESS,JOBNAMES
Y SESS,STATUS
SESS JOBNAMES,STATUS
JOBNAMES SESS,JOBNAMES,STATUS
STATUS

,MCSFLAG=(flag name) flag name: Any combination of the following, separated by commas:
REG0 HRDCPY
RESP QREG0
REPLY NOTIME
BRDCST NOCPY
CMD BUSYEXIT

,CONNECT=connect field connect field: RX-type address or register (2) - (12).
Note: CONNECT is mutually exclusive with the CONSID, CONSNAME,
SYSNAME, and SYNCH=YES parameters.

,CONSID=console id console id: RX-type address or register (2) - (12).
,CONSNAME=console name console name: RX-type address or register (2) - (12).

,SYSNAME=system name system name: RX-type address or register (2) - (12).

,CART=cmd/resp token cmd/resp token: RX-type address or register (2) - (12).

,KEY=key key: RX-type address or register (2) - (12).

,TOKEN=token token: RX-type address or register (2) - (12).

,JOBID=job id job id: RX-type address or register (2) - (12).

,JOBNAME=jobname jobname: RX-type address or register (2) - (12).

,LINKAGE=SVC Default : SVC
,LINKAGE=BRANCH

,SYNCH=NO Default : NO
,SYNCH=YES

,WSPARM=0 Default : 0
,WSPARM=wait state addr wait state addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

‘msg’
(‘text’)
(‘text’,line type)

WTO Macro

WTO — Write to Operator 323

(‘text’,line type)
(‘text’,line type)
TEXT=(text addr)
TEXT=(text addr,line type)
TEXT=((text addr,line type),...(text addr,line type))

Specifies the message or multiple-line message to be written to one or more
operator consoles.

The parameter ‘msg’ is used to write a single-line message to the operator. In
the format, the message must be enclosed in apostrophes, which do not appear
on the console. It can include any character that can be used in a character
(C-type) DC instruction.

To have apostrophes appear in the message text, use two apostrophes to get
one to appear. For example, ’’Message Off’’ would appear on a display as
’Message Off’. When a program issues a WTO macro, the system translates
the text; only standard printable EBCDIC characters are passed to
MCS-managed display devices. The EBCDIC characters that can be displayed
are listed in z/OS MVS Programming: Assembler Services Guide. All other
characters are replaced by blanks. Unless the console has dual-case capability,
lowercase characters are displayed or printed as uppercase characters.

The message is assembled as a variable-length record. The parameters
TEXT=(text addr) and TEXT=(text addr,line type) represent a 4-byte address of
a message to be displayed that consists of a 2-byte message length followed
by the message text. The 2-byte message length describes the length of the
message text only. There are no boundary requirements.

The parameters (‘text’) and (text addr,line type) are used to write a multiple-line
message to the operator. For a problem-state program, the message can be up
to ten lines long; the system truncates the message at the end of the tenth line.
The ten-line limit does not include the control line (message IEE932I), as
explained under line type C below. The message can be up to 255 lines
maximum.

Notes:

1. If the parameter (‘text’) is coded without repetition, the message appears as
a single-line message.

2. Specify all lines of a multiple-line WTO consistently with the message text or
the TEXT keyword.

3. When coding the TEXT keyword for a multiple-line message:

v Do not exceed the 70-character limit for the macro parameter value.

v You can use the CONNECT parameter to connect subsequent lines of a
multiple-line message if you cannot fit them into one macro invocation.

4. For a multiple-line message, you must clear the three high-order bytes of
register 0.

The line type defines the type of information contained in the ‘text’ field of each
line of the message:

C Indicates that the ‘text’ parameter is the text to be contained in the
control line of the message. The control line normally contains a
message title. C may only be coded for the first line of a multiple-line
message. If this parameter is omitted and descriptor code 9 is coded,
the system generates a control line (message IEE932I) containing only
a message identification number. The control line remains static while
you scroll through all the lines of a multi-line message displayed on an

WTO Macro

324 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

MCS console (provided that the message is displayed in an out-of-line
display area). Control lines are optional.

L Indicates that the ‘text’ parameter is a label line. Label lines contain
message heading information; they remain static while you scroll
through all the lines of a multi-line message displayed on an MCS
console (provided that the message is displayed in an out-of-line
display area). Label lines are optional. If coded, lines must either
immediately follow the control line or another label line, or be the first
line of the multiple-line message if there is no control line. Only two
label lines may be coded per message. See “Embedding Label Lines in
a Multi-line Message” in z/OS MVS Programming: Authorized
Assembler Services Guide for additional information about how to
include multiple label lines within a message.

D Indicates that the ‘text’ parameter contains the information to be
conveyed to the operator by the multiple-line message. The data lines
are paged while you scroll through all the lines of a multi-line message
displayed on an MCS console.

DE Indicates that the ‘text’ parameter contains the last line of information to
be passed to the operator. Specify DE on the last line of text of the
WTO. If there is no text on the last line, specify E.

E Indicates that the previous line of text was the last line of text to be
passed to the operator. The ‘text’ parameter, if any, coded with a line
type of E is ignored. Specify E on the last line of the WTO if that line
has no text. If the last line has text, specify DE.

,ROUTCDE=(routing code)
Specifies the routing code or codes to be assigned to the message.

The routing codes are:

Message
Routing Code

Definition

1 Master console action
2 Master console information
3 Tape pool
4 Direct access pool
5 Tape library
6 Disk library
7 Unit record pool
8 Teleprocessing control
9 System security
10 System error/maintenance/system programmer information
11 Programmer information
12 Emulators
13-20 Reserved for customer use
21-28 Reserved for IBM- or customer-defined subsystem use
29-41 Reserved for IBM
42 General information about JES2 or JES3
43-64 Reserved for JES2 or JES3
65-96 Messages associated with particular processors
97-128 Messages associated with particular devices

WTO Macro

WTO — Write to Operator 325

If you omit the ROUTCDE, DESC, and CONSID or CONSNAME keywords, the
system uses the routing code specified on the ROUTCODE keyword on the
DEFAULT statement in the CONSOLxx member of SYS1.PARMLIB.

Note: Routing codes 1, 2, 3, 4, 7, 8, 10, and 42 cause hard copy of the
message when display consoles are used, or more than one console is
active. All other routing codes may go to hard copy as a PARMLIB option
or as a result of a VARY HARDCPY command.

,DESC=(descriptor code)
Specifies the message descriptor code or codes to be assigned to the
message. Descriptor codes 1 through 6, 11 and descriptor code 12 are mutually
exclusive. Codes 7 through 10, and 13, can be assigned in combination with
any other code.

The descriptor codes are:

Message
Descriptor Code

Definition

1 System failure
2 Immediate action required
3 Eventual action required
4 System status
5 Immediate command response
6 Job status
7 Delete message when job step terminates
8 Out-of-line message
9 Operator request
10 Dynamic status displays
11 Critical eventual action requested
12 Important information messages
13 Message previously automated

Action messages many have an * sign or @ sign displayed before the first
character of the message. The * sign indicates that the WTO was issued by an
authorized program. The @ sign indicates that the WTO was issued by an
unauthorized program.

All WTO messages with descriptor codes 1, 2, or 11 are action messages that have
an asterisk (*) sign displayed before the first character of the message. This
indicates a need for operator action. These action messages will cause the audible
alarm to sound on operator consoles so-equipped. On operator consoles that
support color, descriptor codes determine the color in which a message should be
displayed. Colors can indicate the type of action you need to take depending on
your installation setup. The colors used for different descriptor codes are described
in z/OS MVS System Commands.

The system holds messages with descriptor codes 1, 2, 3, or 11 until you delete
them. When you no longer need messages with descriptor codes 1, 2, 3, or 11, you
should delete those messages using the DOM macro. If messages with descriptor
codes 1, 2, 3, or 11 also have descriptor code 7, the system deletes them
automatically at task termination. The system adds descriptor code 7 to all
messages with descriptor code 1 or 2.

WTO Macro

326 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

||

If descriptor code 7 is specified, the system deletes the message automatically
when the job step that issued it ends.

The message processing facility (MPF) can suppress messages. For MPF to
suppress messages, the hardcopy log must be active. The suppressed messages
do not appear on any console; they do appear on the hardcopy log.

,AREAID= id char
Specifies a display area of the console screen on which a multiple-line message
is to be written.

Valid area IDs are A through J and Z. A through J refer to out-of-line areas
defined on an MCS console by the CONTROL A command. The character Z
designates the message area (the screen’s general message area, rather than
a defined display area); it is assumed if nothing is specified. The areas are
explained in z/OS MVS System Commands.

Notes:

1. WTO ignores this keyword on single-line invocations.

2. When you specify AREAID, you must specify descriptor codes 8 and 9.

3. If you specify this parameter, the area could be overlaid by a currently
running dynamic display. Support for queuing messages with descriptor
code 8 is by console ID only. You must specify a console explicitly using the
CONSID or CONSNAME parameters on WTO.

4. You can use the CONVCON macro to validate an area ID.

,MSGTYP=(msg type)
Specifies how the message is to be routed to consoles on which the MONITOR
command is active. If you specify anything other than MSGYTP=N, which is the
default, your message will be routed according to your specification on
MSGTYP, and the ROUTCDE parameter is ignored.

For SESS, JOBNAMES, or STATUS, the message is to be routed to the
console that issued the MONITOR SESS, MONITOR JOBNAMES, or
MONITOR STATUS command, respectively. When the message type is
identified by the operating system, the message is routed to those consoles that
requested the information.

For Y, the message type describes what functions (MONITOR SESS,
MONITOR JOBNAMES, and MONITOR STATUS) are desired. N, or omission of
the MSGTYP parameter, indicates that the message is to be routed as specified
in the ROUTCDE parameter. Y creates an area in the WTO parameter list in
which you can set message type information if you are coding a WTO without
any of the following parameters:
v KEY
v TOKEN
v CONSID
v CONSNAME
v TEXT
v REPLYISUR
v CART
v LINKAGE
v SYNCH

IBM recommends that you do not use MSGTYP=Y.

,MCSFLAG= (flag name)
Specifies one or more flags whose meanings are shown below:

WTO Macro

WTO — Write to Operator 327

|
|

Table 42. MCSFLAG Flag Names

Flag Name Meaning

REG0 Queue the message to the console whose console ID is passed in
register 0. You can obtain valid console IDs by issuing the DISPLAY
CONSOLE command. You can use register 0 to pass a 1-byte console
ID (right-justified and padded to the left with zeros) to identify the
console to receive the message. However, IBM recommends you use
the CONSID parameter instead of register 0.

RESP The WTO is an immediate command response.

REPLY This WTO is a reply to a WTOR.

BRDCST Broadcast the message to all active consoles.

HRDCPY Queue the message for hard copy only.

QREG0 Queue the message to the console whose console ID is passed in
register 0. You can use register 0 to pass a 1-byte console ID
(right-justified and padded to the left with zeros) to identify the console
to receive the message. However, IBM recommends you use the
CONSID parameter instead of register 0.

NOTIME Do not append time to the message.

NOCPY Do not queue the message for hard copy.

CMD The WTO is a recording of a system command issued for hardcopy log
purposes.

BUSYEXIT If there are no message or console buffers for either MCS or JES3, or
there is a JES3 staging area shortage, the WTO is terminated with a
X'20' return code and a reason code (in register 0) equal to the number
of active WTO buffers for the issuer’s address space. If you do not
specify BUSYEXIT, most users of WTO will wait until WTO buffers are
available. Specify BUSYEXIT if your task cannot tolerate a wait for WTO
buffers.

Notes:

1. Do not use REG0 or QREG0 if you use the CONSID or CONSNAME
parameters.

2. MCSFLAG=HRDCPY and SYNCH=YES are mutually exclusive.

,CONNECT=connect field
Specifies a field containing the 4-byte message ID of the previous WTO to
which this WTO is to be connected. This message ID is obtained as an output
parameter (returned in register 1) from the previous WTO. If a register is used,
it contains the address of the message ID.

CONNECT is valid only for continuation of multiple-line messages. When you
specify this parameter in the list form, code it as CONNECT= with nothing after
the equal sign.

This parameter is mutually exclusive with the CONSID, CONSNAME, and
SYSNAME parameters.

Note: If you specify LINKAGE=SVC, you can still use register 0, as mentioned
at the beginning of the WTO macro description, to connect WTO
messages. If you specify both register 0 and CONNECT, however, the
system uses the CONNECT parameter. IBM recommends that you use
the CONNECT parameter.

,CONSID=console id
Specifies a 4-byte field containing the ID of the console to receive a message.

WTO Macro

328 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Use this ID in place of a console ID in register 0. If you specify a 4-byte console
ID, or if you specify a console ID for an extended MCS console, you must use
CONSID instead of register 0. If you specify a 1-byte console ID, you must
right-justify it and pad to the left with zeroes. Issue the DISPLAY CONSOLE
command for a list of valid console IDs.

Notes:

1. If you code the CONSID parameter using a register, the register must
contain the console ID itself, rather than the address of the console ID.

2. When you code CONSID on the list form of WTO, code it as CONSID= with
nothing after the equal sign.

3. Do not use both CONSID and register 0 to pass a console ID, because the
results are unpredictable. Be sure to clear the low-order byte of register 0 if
you add the CONSID parameter to an existing invocation of WTO.

4. CONSID is mutually exclusive with the CONNECT, CONSNAME, and
SYSNAME parameters.

,CONSNAME=console name
Specifies an 8-byte field containing a 2- through 8-character name, left-justified
and padded with blanks, of the console to receive a message. When you
specify this parameter in the list form, code it as CONSNAME= with nothing
after the equal sign.

Do not use CONSNAME to pass a console name, together with register 0 to
pass a console ID, because the results are unpredictable. Be sure to clear the
low-order byte of register 0 if you add the CONSNAME parameter to an existing
invocation of WTO.

This parameter is mutually exclusive with the CONSID, CONNECT, and
SYSNAME parameters.

,SYSNAME=system name
Specifies an 8-byte input field containing a system name to be associated with
this message. The system name is that of the system from which the caller
issues the WTO. When you specify this parameter in the list form, code it as
SYSNAME= with nothing after the equal sign.

This parameter is mutually exclusive with the CONNECT parameter.

,CART=cmd/resp token
Specifies an 8-character input field containing a command and response token
to be associated with this message. The command and response token is used
to associate user information with a command and its command response. You
can supply any value as a command and response token. When you specify
this parameter in the list form, code it as CART= with nothing after the equal
sign.

,KEY=key
Specifies an input field containing an 8-byte key to be associated with this
message. The key must be EBCDIC if used with the MVS DISPLAY R
command for retrieval purposes, but it must not be ‘*’. The key must be
left-justified, and padded on the right with blanks. If a register is used, it
contains the address of the key. When you specify this parameter in the list
form, code it as KEY= with nothing after the equal sign.

,TOKEN=token
Specifies an input field containing a 4-byte token to be associated with this
message. This field is used to identify a group of messages that can be deleted
by a DOM macro that includes TOKEN. The token must be unique within an

WTO Macro

WTO — Write to Operator 329

address space and can be any value. When you specify this parameter in the
list form, code it as TOKEN= with nothing after the equal sign.

Note: When you code the TOKEN parameter using a register, the register must
contain the token itself, rather than the address of the token.

,JOBID= job id
Specifies an 8-byte input field containing an ID that identifies the issuer of the
WTO message. When you specify this parameter in the list form, code it as
JOBID= with nothing after the equal sign.

,JOBNAME= jobname
Specifies an 8-byte input field containing a name that identifies the issuer of the
WTO message. When you specify this parameter in the list form, code it as
JOBNAME= with nothing after the equal sign.

,LINKAGE=SVC
,LINKAGE=BRANCH

Specifies how control is to pass to the WTO service.

LINKAGE=SVC indicates that the linkage is by a supervisor call. If LINKAGE is
not specified, this is the default.

LINKAGE=BRANCH indicates that the linkage is by a branch-and-link. This
parameter is used by programs that run at times when an SVC cannot be
issued, and by programs that require the WTO request to be handled
synchronously.

When you specify this parameter in the list form, code it as LINKAGE= with
nothing after the equal sign.

If you specify LINKAGE=BRANCH, you cannot put the CONNECT value in
register 0. You must use the CONNECT keyword.

,SYNCH=NO
,SYNCH=YES

Specifies whether the WTO request processes synchronously with the caller.

SYNCH=NO, the default, indicates that the request is not processed
synchronously.

SYNCH=YES indicates that the request is to be processed synchronously. This
parameter is used in error and recovery environments, when normal message
processing cannot be used. The message is sent to a console, where it is held
on the screen for up to ten seconds, before control is returned to the caller. A
copy of the message is queued for transcription to the hardcopy log.

If you specify SYNCH=YES:

v You must specify the parameter LINKAGE=BRANCH.

v The message text must be 14 lines or less.

v The following parameters are mutually exclusive: CONNECT, AREAID, and
MCSFLAG=HRDCPY.

Your installation can determine which consoles can receive synchronous
messages by using the SYNCHDEST parameter in the CONSOLxx member of
SYS1.PARMLIB. For additional information on the SYNCHDEST parameter, see
z/OS MVS Initialization and Tuning Reference.

,WSPARM=0
,WSPARM=wait state addr

Specifies whether a wait state is associated with this message.

WTO Macro

330 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

A value of zero indicates that there is no wait state associated with this
message. If you do not specify WSPARM, this is the default.

A nonzero value indicates either the address of a LOADWAIT parameter list or
a register containing a pointer to the parameter list. The LOADWAIT macro
generates the LOADWAIT parameter list. When you specify this parameter in
the list form, code it as WSPARM= with nothing after the equal sign.

This parameter requires the SYNCH=YES and LINKAGE=BRANCH parameters.

ABEND Codes
WTO might abnormally terminate with abend code X'D23'. See z/OS MVS System
Codes for an explanation and programmer response for this code.

Return and Reason Codes
When the WTO macro returns control to your program, GPR 15 contains one of the
following hexadecimal return codes.

Table 43. Return Codes for the WTO Macro

Return Code Meaning and Action

00 Meaning : Processing completed successfully.

Action : None.

04 Meaning : Program error. One of the following occurred:

v The number of lines passed was 0. The request was ignored.

v The number of lines passed was greater than 255 and you did not specify the
CONNECT parameter. Only 255 lines were processed.

v The message text length for a line was less than 1. All lines up to the error line
were processed.

Action : Do one or more of the following:

v Make sure your text is properly referenced. If you are using the TEXT
parameter, make sure it is pointing to valid data.

v Use the CONNECT parameter to organize your message into groups of 255 or
fewer lines of text.

v Make sure your message text is defined correctly. If you are using the TEXT
parameter, make sure the first two bytes of data in the area pointed to by the
TEXT parameter value contain the length of the message text.

In all cases, correct the problem and retry the request.

08 Meaning : Program error. The connecting message ID (passed in register 0 or as
specified by the CONNECT parameter value) does not match any on the queue.
The request was ignored.

Action : Verify the connect ID value, correct the problem, and retry the request.

0C Meaning : Program error. A line type is not valid. An end was forced at the point
of the error unless the first line is an E line, in which case the request was
ignored. All messages up to this one in the multi-line request were processed.

Action : Determine if a line type value on your multi-line message was not
syntactically correct. Correct the problem and retry the request.

10 Meaning : Environmental error. Multiple line WTO processing has been
terminated after 1000 lines during a WTO buffer shortage.

Action : Retry the request when the buffer storage constraint has been relieved.

20 Meaning : Environmental error. WTO processing has been terminated because it
would have caused a wait state, and BUSYEXIT was specified. Register 0
contains the number of active WTO buffers for the issuer’s address space.

Action : Retry the request when the buffer storage constraint has been relieved.

WTO Macro

WTO — Write to Operator 331

Table 43. Return Codes for the WTO Macro (continued)

Return Code Meaning and Action

24 Meaning : Environmental error. BUSYEXIT was not specified and WTO
processing has been terminated. Processing the WTO might have caused a WTO
buffer shortage that would require a reIPL. If this WTO was part of a multiple line
WTO, the multiple line WTO is ended.

Action : Retry the request when the buffer storage constraint has been relieved.

30 Meaning : Environmental error. For routing code 11, the required resource was
not available and the request was ignored. For any other routing code, the
request was processed.

Action : Retry the request when the resource you need is available.

40 Meaning : Environmental error. WTO was issued with LINKAGE=BRANCH;
insufficient storage was available to queue the message for delayed issue. If
SYNCH=NO was specified, the message was not queued for delayed issue. If
SYNCH=YES was specified, the message was delivered for display, but not
queued for hardcopy.

Action : If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

44 Meaning : Environmental error. WTO was issued with LINKAGE=BRANCH,
SYNCH=YES; no usable console was available. The message was queued for
hardcopy, but not delivered for display.

Action : If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

48 Meaning : Environmental error. WTO was issued with LINKAGE=BRANCH,
SYNCH=YES; no usable console was available and insufficient storage was
available to queue the message for delayed issue. The message was not
delivered for display, nor queued for hardcopy.

Action : If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

4C Meaning : Environmental error. WTO was issued with LINKAGE=BRANCH; no
storage was available for the use of WTO processing. If WSPARM=0, no
processing was done. If WSPARM does not equal zero, WTO loaded the wait
state, but performed no other processing.

Action : If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

Example 1
Issue a WTO with routing codes 1 and 10, descriptor code 2, using the BUSYEXIT
option of the MCSFLAG parameter. Send an immediate action message to the
master console. If there is a WTO buffer shortage, WTO will return rather than wait
for an available buffer.
WTO ’USR001I CRITICAL RESOURCE SHORTAGE DETECTED’,X

ROUTCDE=(1,10), X
DESC=(2),MCSFLAG=BUSYEXIT

Example 2
Issue an important information message to a console whose name is defined in
field MYCONS. This message is issued using the branch-entry option.

WTO Macro

332 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

WTO ’USR123I DO NOT SUBMIT JOBS REQUESTING THREE OR MORE TAPX
ES DURING FIRST SHIFT’,
DESC=(12),CONSNAME=MYCONS,LINKAGE=BRANCH,SYNCH=NO

.

.

.
MYCONS DC CL8’SCHDCONS’

Example 3
Issue a multi-line message using the TEXT parameter. This is an important
information message which does not have a time stamp and is not sent to the
hardcopy log.

WTO TEXT=((REMIND1,D),(REMIND2,D),(REMIND3,DE)),X
DESC=(12),MCSFLAG=(NOTIME,NOCPY)

.

.

.
REMIND1 DC AL2(L’RMD1TXT)
RMD1TXT DC C’USR003I REMINDER: THE SYSTEM IS NOT AVAILABLE FOR USEX

ON THIRD SHIFT’
REMIND2 DC AL2(L’RMD2TXT)
RMD2TXT DC C’FOR SPECIAL REQUESTS CONTACT SYSTEM SUPPORT’
REMIND3 DC AL2(L’RMD3TXT)
RMD3TXT DC C’CALL THE STATUS DESK FOR FURTHER INFORMATION’

WTO—List Form
Use the list form of the WTO macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area
of storage, which the execute form of the macro uses to store the parameters.

Syntax
The list form of the WTO macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTO.

WTO

� One or more blanks must follow WTO.

‘msg’ msg: Up to 126 characters.
(‘text’) text: Up to 126 characters.
(‘text’,line type)

Notes:

1. If you code ‘msg’ or (‘text’...), it must be the first parameter you code.

2. For a single-line WTO, the parameter value is not required on TEXT for
the list form. Code only TEXT=. Then code TEXT=(text addr) on the
execute form.

TEXT=
TEXT=((,line type),(,line type),...(,line type))

WTO Macro

WTO — Write to Operator 333

The permissible line types, text lengths, and maximum numbers of each line
type are shown below:

line type text maximum number
C 35 char 1 C type
L 71 char 2 L type
D 71 char 255 D type
DE 71 char 1 DE type

or
E None 1 E type

The maximum total number of lines that can be coded in one instruction is
255.

,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 128. The routing code is one or more
codes, separated by commas, or a hyphen to indicate a range.

,DESC=(descriptor code) descriptor code: Decimal digit from 1 to 13. The desc code is one or more
codes, separated by commas.

,AREAID=id char id char: Alphabetic character A - J, Z.

,MSGTYP=(msg type) msg type: Any of the following
N SESS,JOBNAMES
Y SESS,STATUS
SESS JOBNAMES,STATUS
JOBNAMES SESS,JOBNAMES,STATUS
STATUS

,MCSFLAG=(flag name) flag name: Any combination of the following, separated by commas:
REG0 HRDCPY
RESP QREG0
REPLY NOTIME
BRDCST NOCPY
CMD BUSYEXIT

,CONNECT= Parameter value not required for list form. Code only,CONNECT=. If you code
CONNECT on the execute form of WTO, you must code the same parameter
on the list form.

,CONSID= Parameter value not required for list form. Code only,CONSID= (or
,CONSNAME=). If you code CONSID (or CONSNAME) on the execute form
of WTO, you must code the same parameter on the list form.

,CONSNAME=

,SYSNAME= Parameter value not required for list form. Code only,SYSNAME=. If you code
SYSNAME on the execute form of WTO, you must code the same parameter
on the list form.

,CART= Parameter value not required for list form. Code only,CART=. If you code
CART on the list form of WTO, you must code CART on the execute form.

,KEY= Parameter value not required for list form. Code only,KEY=. If you code KEY
on the list form of WTO, you must code KEY on the execute form.

,TOKEN= Parameter value not required for list form. Code only,TOKEN=. If you code
TOKEN on the list form of WTO, you must code TOKEN on the execute form.

WTO Macro

334 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,JOBID= Parameter value not required for list form. Code only,JOBID=. If you code
JOBID on the list form of WTO, you must code JOBID on the execute form.

,JOBNAME= Parameter value not required for list form. Code only,JOBNAME=. If you code
JOBNAME on the list form of WTO, you must code JOBNAME on the execute
form.

,LINKAGE= Parameter value not required for list form. Code only,LINKAGE=. If you code
LINKAGE on the list form of WTO, you must code LINKAGE on the execute
form.

,SYNCH=NO Default : NO
,SYNCH=YES

,WSPARM= Parameter value not required for list form. Code only,WSPARM=. If you code
WSPARM on the list form of WTO, you must code WSPARM on the execute
form.

,MF=L

Parameters
The parameters are explained under the standard form of the WTO macro with the
following exception:

,MF=L
Specifies the list form of the WTO macro.

WTO—Execute Form
Use the execute form of the WTO macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

The message cannot be modified on the execute form of the macro if you code
inline text (‘msg’ or (‘text’...)) on the list form.

Syntax
The execute form of the WTO macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTO.

WTO

� One or more blanks must follow WTO.

WTO Macro

WTO — Write to Operator 335

TEXT=(text addr)
TEXT=((text addr,),(text addr,),...(text addr,))

text addr: RX-type address or register (2) - (12).

Notes:

1. If you code TEXT=(text addr) on the execute form of WTO, you must code
TEXT= on the list form.

2. If you specify inline text on the list form (‘msg’ or (‘text’...)), do not code
the TEXT keyword on the execute form.

,CONNECT=connect field connect field: RX-type address or register (2) - (12). If you code CONNECT
on the execute form of WTO, you must code the same parameter on the list
form.

,CONSID=console id console id: RX-type address or register (2) - (12).
,CONSNAME=console name console name: RX-type address or register (2) - (12).

If you code CONSID (or CONSNAME) on the execute form of WTO, you must
code the same parameter on the list form.

,SYSNAME=system name system name: RX-type address or register (2) - (12). If you code SYSNAME
on the execute form of WTO, you must code the same parameter on the list
form.

,CART=cmd/resp token cmd/resp token: RX-type address or register (2) - (12). If you code CART on
the execute form of WTO, you must code CART on the list form.

,KEY=key key: RX-type address or register (2) - (12). If you code KEY on the execute
form of WTO, you must code KEY on the list form.

,TOKEN=token token: RX-type address or register (2) - (12). If you code TOKEN on the
execute form of WTO, you must code TOKEN on the list form.

,JOBID=job id job id: RX-type address or register (2) - (12). If you code JOBID on the
execute form of WTO, you must code JOBID on the list form.

,JOBNAME=jobname jobname: RX-type address or register (2) - (12). If you code JOBNAME on the
execute form of WTO, you must code JOBNAME on the list form.

,LINKAGE=SVC Default : SVC
,LINKAGE=BRANCH If you code LINKAGE on the execute form of WTO, you must code LINKAGE

on the list form.

,SYNCH=NO Default : NO
,SYNCH=YES

,WSPARM=0 Default : 0
,WSPARM=wait state addr wait state addr: RX-type address or register (2) - (12).

If you code WSPARM on the execute form of WTO, you must code WSPARM
on the list form.

,MF=(E,list addr) list addr: RX-type address, or register (1) - (12).

WTO Macro

336 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Parameters
The parameters are explained under the standard form of the WTO macro, with the
following exception:

,MF=(E, list addr)
Specifies the execute form of the WTO macro.

list addr specifies the area that the system uses to store the parameters.

Example
Write a message with a prebuilt parameter list pointed to by register 1.
WTO MF=(E,(1))

WTO Macro

WTO — Write to Operator 337

WTO Macro

338 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

WTOR — Write to Operator with Reply

Description
The WTOR macro causes a message requiring a reply to be written to one or more
operator consoles and the hardcopy log. The macro also provides the information
required by the system to return the reply to the issuing program. See z/OS MVS
Programming: Authorized Assembler Services Guide for more information on using
the WTOR macro.

For information about how to select a macro for an MVS/SP version other than the
current version, see “Compatibility of MVS Macros” on page 1.

The description of the WTOR macro follows. The WTOR macro is also described in
z/OS MVS Programming: Assembler Services Reference ABE-HSP, with the
exception of the MSGTYP, SYSNAME, JOBID, JOBNAME, LINKAGE, and SYNCH
parameters.

Environment
If you code LINKAGE=SVC , the requirements for the caller are:

Minimum authorization : One of the following, depending on the parameters you
code:

v Problem state and PSW key 0-7.

v If you code the MSGTYP, SYSNAME, JOBID, JOBNAME,
and SYNCH parameters, one of the following:
– Supervisor state with PSW key 0-7
– APF-authorized

Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts.
Locks : No locks held
Control parameters : Must be in the primary address space

If you code LINKAGE=BRANCH , the requirements for the caller are:

Minimum authorization : One of the following:
v Supervisor state with PSW key 0-7
v APF-authorized

Dispatchable unit mode : Task or SRB
Cross memory mode : Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled or disabled for I/O and external interrupts.
Locks : The caller may hold locks, but is not required to hold any.
Control parameters : Must be in the primary address space.

Programming Requirements
Be aware of the following when coding the WTOR macro:

© Copyright IBM Corp. 1988, 2002 339

v The caller must clear register 0 unless using register 0 to pass a 1-byte console
ID with MCSFLAG=REG0. However, IBM recommends using the CONSID
parameter rather than register 0.

v The parameter list for WTOR must begin on a fullword boundary.

v If the caller is disabled, the WTOR parameter list, reply area, and reply ECB
must be in fixed storage.

v If the list and execute forms of the WTOR macro are in separate modules, both
modules must be assembled or compiled with the same level of WTOR.

v When you’re coding a reentrant program, make sure the WTOR parameter list is
generated correctly. To ensure this, you must code the same parameters on both
forms, only when you code one or more of the following parameters:
– RPLYISUR
– CONSID
– CONSNAME
– SYSNAME
– CART
– KEY
– TOKEN
– JOBNAME
– JOBID
– LINKAGE

On the list form, code only the parameter and the equal sign; do not code a
parameter value as well. If you specify parameter values on the list form, the
system issues an MNOTE and ignores the data.

v For any WTOR keywords that allow a register specification, the value must be
right-justified in the register.

v If you specify the TEXT keyword for a multi-line WTOR, you must code its
parameters in the following way:

– On the list form, omit text addr for each line, but include line type. If you
specify text addr, the system ignores the data and issues an MNOTE.

– On the execute form, omit line type for each line, but include text addr.

Restrictions
If the LINKAGE=BRANCH parameter is specified, the SYNCH=YES parameter is
required.

You can issue a multi-line WTOR only if you specify LINKAGE=BRANCH,
SYNCH=YES.

Issue a synchronous message only if your program is in a state in which it cannot
issue an ordinary WTOR (LINKAGE=SVC), and you must receive operator input
before continuing.

The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the WTOR macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

WTOR Macro

340 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Used as a work register by the system
1 Message identification number if the macro completed normally

(you can use this number to delete the message when it is no
longer needed); otherwise, used as a work register by the system

2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
SYNCH=YES causes the calling program to display the message, become disabled,
and receive the reply synchronously.

Syntax
The standard form of the WTOR macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTOR.

WTOR

� One or more blanks must follow WTOR.

‘msg’,reply addr,reply length,ecb addr
(‘text’,reply addr,reply length,ecb addr)
((‘text’,line type),...(‘text’,line type)),reply addr,reply length,ecb addr
TEXT=(text addr,reply addr,reply length,ecb addr)
TEXT=((text addr,line type),reply addr,reply length,ecb addr)
TEXT=(((text addr,line type),...(text addr, line type)),reply addr,reply length,ecb addr)

Note: If you code ‘msg’... or (‘text’...), it must be the first parameter you code.
msg: Up to 122 characters.
text: Up to 122 characters.
text addr: RX-type address or register (2) - (12).
reply addr: A-type address, or register (2) - (12).
reply length: Symbol, decimal digit, or register (2) - (12). The minimum length
is 1; the maximum length is 119.

WTOR Macro

WTOR — Write to Operator with Reply 341

ecb addr: A-type address, or register (2) - (12).

The permissible line types, text lengths, and maximum numbers are shown
below:

line type text maximum number
C 31 char 1 C type
L 67 char 2 L type
D 67 char 14 D type
DE 67 char 1 DE type

or
E None 1 E type

The maximum total of lines that can be coded in one instruction is 14.

,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 128. The routing code is one or more
codes, separated by commas, or a hyphen to indicate a range.

,DESC=(descriptor code) descriptor code: Decimal number 7 or 13. If you code both 7 and 13, separate
them with commas.

,MSGTYP=(msg type) msg type: Any of the following:
N SESS,JOBNAMES
Y SESS,STATUS
SESS JOBNAMES,STATUS
JOBNAMES SESS,JOBNAMES,STATUS
STATUS

,MCSFLAG=(flag name) flag name: Any combination of the following, separated by commas:
REG0 HRDCPY
RESP QREG0
REPLY NOTIME
BRDCST NOCPY
CMD

,RPLYISUR=reply console reply console: RX-type address or register (2) - (12).

,CONSID=console id console id: RX-type address or register (2) - (12).
,CONSNAME=console name console name: RX-type address or register (2) - (12).

,SYSNAME=system name system name: RX-type address or register (2) - (12).

,CART=cmd/resp token cmd/resp token: RX-type address or register (2) - (12).

,KEY=key key: RX-type address or register (2) - (12).

,TOKEN=token token: RX-type address or register (2) - (12).

,JOBID=job id job id: RX-type address or register (2) - (12).

,JOBNAME=jobname jobname: RX-type address or register (2) - (12).

,LINKAGE=SVC Default : SVC
,LINKAGE=BRANCH

,SYNCH=NO Default : NO
,SYNCH=YES

WTOR Macro

342 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Parameters
The parameters are explained as follows:

‘msg’,reply addr,reply length,ecb addr
(‘text’,reply addr,reply length,ecb addr)
((‘text’,line type,...‘text’,line type),reply addr,reply length,ecb addr)
TEXT=(text addr,reply addr,reply length,ecb addr)
TEXT=((text addr,line type),reply addr,reply length,ecb addr)
TEXT=(((text addr,line type),...(text addr, line type)),reply addr,reply length,ecb
addr)

Specifies the message or multiple-line message to be written to one or more
operator consoles.

Use the ‘msg’ parameter to write a single-line message to the operator. Enclose
the message in apostrophes. The apostrophes do not appear on the console.
You can include any character that can be used in a character (C-type) DC
instruction.

To have apostrophes appear in the message text, use two apostrophes to get
one to appear. For example, ’’Message Off’’ would appear on a display as
’Message Off’. When a program issues a WTOR macro, the system translates
the text; only standard printable EBCDIC characters are passed to
MCS-managed display devices. The EBCDIC characters that can be displayed
are listed in “Timing and Communication” in z/OS MVS Programming:
Assembler Services Guide. All other characters are replaced by blanks. Unless
the console has dual-case capability, lowercase characters are displayed or
printed as uppercase characters.

The message is assembled as a variable-length record. text addr represents a
4-byte address of a message to be displayed that consists of a 2-byte message
length followed by the message text. The 2-byte message length describes the
length of the message text only. There are no boundary requirements.

Use the parameters (‘text’) and (text addr,line type) to write a multiple-line
message to the operator. For a problem-state program, the message can be up
to ten lines long; the system truncates the message at the end of the tenth line.
The ten-line limit does not include the control line (message IEE932I), as
explained under line type C below. The message can be up to 14 lines
maximum.

Notes:

1. You can issue a multi-line WTOR only if you specify SYNCH=YES. See the
SYNCH parameter description for information about its use.

2. If you code the parameter (‘text’) without repetition, the message appears as
a single-line message.

3. Specify all lines of a multiple-line WTOR consistently with the message text
or the TEXT keyword. When coding the TEXT keyword for a multiple-line
message, do not exceed the 67-character limit for the macro parameter
value.

The line type defines the type of information contained in the ‘text’ field of each
line of the message:

C Indicates that the ‘text’ parameter is the text to be contained in the
control line of the message. The control line normally contains a
message title. C may be coded only for the first line of a multiple-line

WTOR Macro

WTOR — Write to Operator with Reply 343

message. The control line remains static while you scroll through all the
lines of a multi-line message displayed on an MCS console (provided
that the message is displayed in an out-of-line display area). Control
lines are optional.

L Indicates that the 'text' parameter is a label line. Label lines contain
message heading information; they remain static while you scroll
through all the lines of a multi-line message displayed on an MCS
console (provided that the message is displayed in an out-of-line
display area). Label lines are optional. If coded, lines must either
immediately follow the control line or another label line or be the first
line of the multiple-line message if there is no control line. Only two
label lines may be coded per message. See “Embedding Label Lines in
a Multi-line Message” in z/OS MVS Programming: Authorized
Assembler Services Guide for additional information about how to
include multiple label lines within a message.

D Indicates that the ‘text’ parameter contains the information to be
conveyed to the operator by the multiple-line message. The data lines
are paged during framing operations on a display console.

DE Indicates that the ‘text’ parameter contains the last line of information to
be passed to the operator. Specify DE on the last line of text of the
WTO. If there is no text on the last line, specify E.

E Indicates that the previous line of text was the last line of text to be
passed to the operator. The ‘text’ parameter, if any, coded with a line
type of E is ignored. Specify E on the last line of the WTOR if that line
has no text. If the last line has text, specify DE.

Note: All WTOR messages are action messages. An indicator appears before
the first character of an action message to indicate a need for operator
action. Action messages will cause the audible alarm to sound on
operator consoles so-equipped.

reply addr specifies the address in virtual storage of the area into which the
system is to place the reply. The reply is left-justified at this address.

reply length specifies the length, in bytes, of the reply message.

ecb addr specifies the address of the event control block (ECB) to be used by
the system to indicate the completion of the reply and the ID of the replying
console. The ECB address must point to a fullword boundary. After the system
receives the reply, the ECB appears as follows:
Offset Length(bytes) Contents
0 1 Completion code
1 2 Not an intended programming interface
3 1 Console ID in hexadecimal

Note: Use RPLYISUR to obtain the 4-byte console id and console name of the
console issuing the reply.

,ROUTCDE=(routing code)
Specifies the routing code or codes to be assigned to the message.

WTOR Macro

344 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

The routing codes are:

Message Routing
Code

Definition

1 Master console action
2 Master console information
3 Tape pool
4 Direct access pool
5 Tape library
6 Disk library
7 Unit record pool
8 Teleprocessing control
9 System security
10 System error/maintenance/system programmer information
11 Programmer information
12 Emulators
13-20 Reserved for customer use
21-28 Reserved for IBM- or customer-defined subsystem use
29-41 Reserved for IBM
42 General information about JES2 or JES3
43-64 Reserved for JES2 or JES3
65-96 Messages associated with particular processors
97-128 Messages associated with particular devices

If you omit the ROUTCDE, and CONSID or CONSNAME keywords, the system
uses the routing code specified on the ROUTCODE keyword on the DEFAULT
statement in the CONSOLxx member of SYS1.PARMLIB. See z/OS MVS
Initialization and Tuning Reference for information about CONSOLxx.

,DESC=(descriptor code)
Specifies the message descriptor code or codes to be assigned to the
message. Valid descriptor codes for the WTOR macro are:

7 Retain action message for life-of-task

13 Message previously automated

All WTOR messages are action messages that have an asterisk (*) sign
displayed before the first character. This indicates a need for operator action.

The system adds descriptor code 7 to all WTOR messages. The system holds
all WTOR messages until one of the following events occurs:

v The system deletes the WTOR message when the reply is received.

v You delete the WTOR message using the DOM macro. You should delete
any unanswered WTOR messages that are no longer current.

v The system deletes the WTOR message at task termination.

The message processing facility (MPF) can suppress messages. For MPF to
suppress messages, the hardcopy log must be active. The suppressed
messages do not appear on any console; they do appear on the hardcopy log.

,MSGTYP=(msg type)
Specifies how the message is to be routed to consoles on which the MONITOR
command is active. If you specify anything other than MSGTYP=N, which is the
default, your message is routed according to your specification on MSGTYP,
and the ROUTCDE parameter is ignored.

WTOR Macro

WTOR — Write to Operator with Reply 345

For SESS, JOBNAMES, or STATUS, the message is to be routed to the
console that issued the MONITOR SESS, MONITOR JOBNAMES, or
MONITOR STATUS command, respectively. When the message type is
identified by the operating system, the message is routed to only those
consoles that requested the information.

For Y or N, the message type describes what functions (MONITOR SESS,
MONITOR JOBNAMES, and MONITOR STATUS) are desired. N, or omission of
the MSGTYP parameter, indicates that the message is to be routed as specified
in the ROUTCDE parameter. Y creates an area in the WTO parameter list in
which you can set message type information if you are coding a WTOR without
any of the following parameters:
v KEY
v TOKEN
v CONSID
v CONSNAME
v TEXT
v RPLYISUR
v CART
v LINKAGE
v SYNCH

IBM recommends that you do not use MSGTYP=Y.

,MCSFLAG= (flag name)
Specifies one or more flag names whose meanings are shown below:

Table 44. MCSFLAG Flag Names

Flag Name Meaning

REG0 Queue the message to the console whose console ID is passed in
register 0. Issue the DISPLAY CONSOLES command to display valid
console IDs. You can use register 0 to pass a 1-byte console ID
(right-justified and padded to the left with zeroes) to identify the console
to receive the message. However, IBM recommends you use the
CONSID parameter instead of register 0.

RESP The WTOR is an immediate command response.

REPLY This is a reply to a WTOR.

BRDCST Broadcast the message to all active consoles.

HRDCPY Queue the message for hard copy only.

QREG0 Queue the message to the console whose console ID is passed in
register 0. You can use register 0 to pass a 1-byte console ID
(right-justified and padded to the left with zeroes) to identify the console
to receive the message. However, IBM recommends you use the
CONSID parameter instead of register 0.

NOTIME Do not append time to the message.

NOCPY Do not queue the message for hard copy.

CMD The WTOR is a recording of a system command issued for hardcopy
log purposes.

,RPLYISUR=reply console
Specifies a 12-byte field where the system will place the 8-byte console name
and the 4-byte console ID of the console through which the operator replies to
this message. When you specify this keyword in the list form, code it as
RPLYISUR= with nothing after the equal sign.

WTOR Macro

346 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,CONSID=console id
Specifies a 4-byte field containing the ID of the console to receive a message.
Issue the DISPLAY CONSOLES command to display a list of valid console IDs.
Use this ID in place of a console ID in register 0. If you specify a 4-byte console
ID, or if you specify a console ID for an extended MCS console, you must use
CONSID instead of register 0. If you specify a 1-byte console ID, you must
right-justify it and pad to the left with zeroes.

Notes:

1. If you code the CONSID parameter using a register, the register must
contain the console ID itself, rather than the address of the console ID.

2. When you code CONSID on the list form of WTOR, code it as CONSID=
with nothing after the equal sign.

3. Do not use both CONSID and register 0 to pass a console ID, because the
results are unpredictable. Be sure to clear the low-order byte of register 0 if
you add the CONSID parameter to an existing invocation of WTOR.

4. CONSID is mutually exclusive with the CONSNAME parameter.

,CONSNAME=console name
Specifies an 8-byte field containing a 2- through 8-character name, left-justified
and padded with blanks, of the console to receive a message. This parameter
is mutually exclusive with the CONSID parameter. When you specify this
keyword in the list form, code it as CONSNAME= with nothing after the equal
sign. Do not use CONSNAME to pass a console name, together with register 0
to pass a console ID, because the results are unpredictable. Be sure to clear
the low-order byte of register 0 if you add the CONSNAME parameter to an
existing invocation of WTOR.

,SYSNAME=system name
Specifies an 8-byte input field containing a system name to be associated with
this message. The system name is that of the system from which the caller
issues the WTOR message. When you specify this parameter in the list form,
code it as SYSNAME= with nothing after the equal sign.

,CART=cmd/resp token
Specifies an 8-byte field containing a command and response token to be
associated with this message. You can specify any value as a command and
response token. The command and response token is used to associate user
information with a command and its command response. When you specify this
keyword in the list form, code it as CART= with nothing after the equal sign.

,KEY=key
Specifies a field containing an 8-byte key to be associated with this message.
The key must be EBCDIC if used with the MVS DISPLAY R command for
retrieval purposes, but it must not be ‘*’. The key must be left-justified and
padded on the right with blanks. If a register is used, it contains the address of
the key. When this keyword is specified in the list form, it must be coded as
KEY= with nothing after the equal sign.

,TOKEN=token
Specifies a field containing a 4-byte token to be associated with this message.
This field is used to identify a group of messages that can be deleted by a
DOM macro that includes TOKEN. The token must be unique within an address
space, and can be any value. When you specify this keyword on the list form,
code it as TOKEN= with nothing after the equal sign.

Note: When you code the TOKEN parameter using a register, the register must
contain the token itself, rather than the address of the token.

WTOR Macro

WTOR — Write to Operator with Reply 347

,JOBID= job id
Specifies an 8-byte input field containing an ID that specifies the issuer of the
WTOR message. When you specify this parameter in the list form, code it as
JOBID= with nothing after the equal sign.

,JOBNAME= jobname
Specifies an 8-byte input field containing a name that specifies the issuer of the
WTOR message. When you specify this parameter in the list form, code it as
JOBNAME= with nothing after the equal sign.

,LINKAGE=SVC
,LINKAGE=BRANCH

Specifies how control is to pass to the WTOR service.

LINKAGE=SVC indicates the linkage is by a supervisor call. If LINKAGE is not
specified, this is the default.

LINKAGE=BRANCH indicates the linkage is by a branch-and-link. You must use
SYNCH=YES with this parameter. This parameter is used by programs that
require the WTOR request to be handled synchronously.

When you specify this keyword in the list form, code it as LINKAGE= with
nothing after the equal sign.

,SYNCH=NO
,SYNCH=YES

Specifies whether the WTOR request processes synchronously with the caller.

SYNCH=NO, the default, indicates that the request is not processed
synchronously.

SYNCH=YES indicates the request is to be processed synchronously. This
parameter is used in error and recovery environments, when normal message
processing cannot be used. The message is sent to the console, and the reply
is obtained immediately, before control is returned to the caller. Before return,
the reply and reply length are moved to the areas specified by the caller, and
the ecb marked “complete.” Copies of the message and reply are queued for
transcription to the hardcopy log.

If you specify SYNCH=YES:
v You must specify the parameter LINKAGE=BRANCH.
v Do not specify MCSFLAG=HRDCPY.

Your installation can determine which consoles can receive synchronous
messages by using the SYNCHDEST parameter in the CONSOLxx member of
SYS1.PARMLIB. For additional information on the SYNCHDEST parameter, see
z/OS MVS Initialization and Tuning Reference.

ABEND Codes
WTOR might abnormally terminate with abend code X'D23'. See z/OS MVS System
Codes for an explanation and programmer response for this code.

Return and Reason Codes
When the WTOR macro returns control to your program, GPR 15 contains one of
the following hexadecimal return codes.

WTOR Macro

348 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Table 45. Return Codes for the WTOR Macro

Return Code Meaning and Action

00 Meaning : Processing completed successfully.

Action : None. Be sure to delete the message by issuing the DOM macro.

04 Meaning : Program error. One of the following occurred:

v The number of lines passed was 0; the request was ignored.

v The message text length for a line was less than 1; all lines up to the error line
were processed.

Action : Correct the problem and retry the request. If you used the TEXT
parameter, make sure the parameter value and the data referenced are correct.

0C Meaning : Program error. The line type was not valid. An end was forced at the
point of the error unless the first line was an E line, in which case the request
was ignored.

Action : Correct the problem and retry the request.

40 Meaning : Environmental error. WTO was issued with LINKAGE=BRANCH;
insufficient storage was available to queue the message for delayed issue. If
SYNCH=NO was specified, the message was not queued for delayed issue. If
SYNCH=YES was specified, the message was delivered for display, but not
queued for hardcopy.

Action : If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

44 Meaning : Environmental error. WTO was issued with LINKAGE=BRANCH,
SYNCH=YES; no usable console was available. The message was queued for
hardcopy, but not delivered for display.

Action : If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

48 Meaning : Environmental error. WTO was issued with LINKAGE=BRANCH,
SYNCH=YES; no usable console was available and insufficient storage was
available to queue the message for delayed issue. The message was not
delivered for display, nor queued for hardcopy.

Action : If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

4C Meaning : Environmental error. WTO was issued with LINKAGE=BRANCH; no
storage was available for the use of WTO processing. If WSPARM=0, no
processing was done. If WSPARM does not equal zero, WTO loaded the wait
state, but performed no other processing.

Action : If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

Example 1
Issue a WTOR to the master console.
L8 EQU 8

.

.

.
WTOR ’USR902A REPLY YES OR NO TO CONTINUE.’,REPLY,L8,REPECB, X

ROUTCDE=(1),RPLYISUR=CONINFO
.
.

WTOR Macro

WTOR — Write to Operator with Reply 349

.
REPLY DS CL8
REPECB DS F
CONINFO DS CL12

Example 2
Issue a WTOR with the TEXT parameter. The message is to go to a specific
console whose name is in field TOCON.
R4 EQU 4
R5 EQU 5
LENG12 EQU 12

.

.

.
LA R4,CATMSG
LA R5,TAPEAREA
WTOR TEXT=((R4),REPAREA,LENG12,TAPEECB), X

CONSNAME=TOCON, X
RPLYISUR=(R5)

.

.

.
CATMSG DC AL2(L’REP64) 00011800
REP64 DC C’USR922A INDICATE NUMBER OF TAPE DRIVES REQUIRED.’
TOCON DC CL8’TAPECON ’
REPAREA DS CL12
TAPEECB DS F
TAPEAREA DS CL12

Example 3
Issue a branch-entry WTOR.
C80 EQU 80

.

.

.
WTOR ’USR940I ENTER THE NAMES OF AFFECTED JOBS:’,REPAR6,C80,JX

OBSECB,RPLYISUR-JOBCONS, X
ROUTCDE=(1),LINKAGE=BRANCH,SYNCH=YES

.

.

.
REPAR6 DS CL80
JOBSECB DS F
JOBCONS DS CL12

Example 4
Issue a WTOR using the TEXT parameter with the list and execute forms of the
macro. The console ID to which the message is to be queued is assumed to be in
field MYCONID. On the TEXT parameter for the execute form, commas mark the
positions of reply addr and ecb addr; for the list form, a comma marks the position
of reply length.
R12 EQU 12
C50 EQU 50 LENGTH OF REPLY AREA

USING *,R12
.
.
.
WTOR MF=(E,M2,EXTENDED),TEXT=(MESSAGE,,C50,),CONSID=MYCONID, X

RPLYISUR=MYCONAR
.
.

WTOR Macro

350 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

.
M2 DS 0H

WTOR TEXT=(,RAREA,,MYECB),CONSID=,ROUTCDE=(2),RPLYISUR=,MF=L
MYCONID DS F
RAREA DS CL50
MYECB DS F
MYCONAR DS CL12
MESSAGE DC AL2(L’MTEXT)
MTEXT DC C’USR930A REQUEST IS AMBIGUOUS. RESPECIFY DEVICE.’

END

WTOR—List Form
Use the list form of the WTOR macro together with the execute form of the macro
for applications that require reentrant code. The list form of the macro defines an
area of storage, which the execute form of the macro uses to store the parameters.

Syntax
The list form of the WTOR macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTOR.

WTOR

� One or more blanks must follow WTOR.

‘msg’,reply addr,reply length,ecb addr
(‘text’,reply addr,reply length,ecb addr)
((‘text’,line type,...,‘text’,line type),reply addr,reply length,ecb addr)
TEXT=(,reply addr,reply length,ecb addr)
TEXT=(((,line type),(,line type),...,(,line type)),reply addr,reply length,ecb addr)

msg: Up to 122 characters.
text: Up to 122 characters.
reply addr: A-type address.
reply length: Symbol, decimal digit. The minimum length is 1; the maximum
length is 119.
ecb addr: A-type address.
The permissible line types, text lengths, and maximum numbers are shown
below:

line type text maximum number
C 31 char 1 C type
L 67 char 2 L type
D 67 char 14 D type
DE 67 char 1 DE type

or
E None 1 E type

The maximum total of lines that can be coded in one instruction is 14.

WTOR Macro

WTOR — Write to Operator with Reply 351

Notes:

1. If you code ‘msg’... or (‘text’...), it must be the first parameter you code.

2. If you do not code reply addr on the list form of WTOR, mark its position
with a comma, and code reply addr on the execute form. The same is true
for reply length and ecb addr.

,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 128. The routing code is one or more
codes, separated by commas, or a hyphen to indicate a range.

,DESC=(descriptor code) descriptor code: Decimal number 7 or 13. If you code both 7 and 13, separate
them with commas.

,MSGTYP=(msg type) msg type: Any of the following:
N SESS,JOBNAMES
Y SESS,STATUS
SESS JOBNAMES,STATUS
JOBNAMES SESS,JOBNAMES,STATUS
STATUS

,MCSFLAG=(flag name) flag name: Any combination of the following, separated by commas:
REG0 HRDCPY
RESP QREG0
REPLY NOTIME
BRDCST NOCPY
CMD

,RPLYISUR= Parameter value not required for list form. Code only,RPLYISUR=. If you code
RPLYISUR on the list form of WTOR, you must code RPLYISUR on the
execute form.

,CONSID= Parameter value not required for list form. Code only,CONSID= (or
,CONSNAME=). If you code CONSID (or CONSNAME) on the list form of
WTOR, you must code CONSID (or CONSNAME) on the execute form.

,CONSNAME=

,SYSNAME= Parameter value not required for list form. Code only,SYSNAME=. If you code
SYSNAME on the list form of WTOR, you must code SYSNAME on the
execute form.

,CART= Parameter value not required for list form. Code only,CART=. If you code
CART on the list form of WTOR, you must code CART on the execute form.

,KEY= Parameter value not required for list form. Code only,KEY=. If you code KEY
on the list form of WTOR, you must code KEY on the execute form.

,TOKEN= Parameter value not required for list form. Code only,TOKEN=. If you code
TOKEN on the list form of WTOR, you must code TOKEN on the execute
form.

,JOBID= Parameter value not required for list form. Code only,JOBID=. If you code
JOBID on the list form of WTOR, you must code JOBID on the execute form.

,JOBNAME= Parameter value not required for list form. Code only,JOBNAME=. If you code
JOBNAME on the list form of WTOR, you must code JOBNAME on the
execute form.

WTOR Macro

352 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

,LINKAGE= Parameter value not required for list form. Code only,LINKAGE=. If you code
LINKAGE on the list form of WTOR, you must code LINKAGE on the execute
form.

,SYNCH=NO Default : NO
,SYNCH=YES

,MF=L

Parameters
The parameters are explained under the standard form of the WTOR macro with
the following exception:

,MF=L
Specifies the list form of the WTOR macro.

WTOR—Execute Form
Use the execute form of the WTOR macro together with the list form of the macro
for applications that require reentrant code. The execute form of the macro stores
the parameters into the storage area defined by the list form.

The message cannot be modified on the execute form of the macro if you code
inline text (‘msg’... or (‘text’...)) on the list form.

Syntax
The execute form of the WTOR macro is written as follows:

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTOR.

WTOR

� One or more blanks must follow WTOR.

,reply addr,reply length,ecb addr
TEXT=(text addr,reply addr,reply length,ecb addr)
TEXT=(((text addr,),(text addr,),...(text addr,)),reply addr,reply length,ecb addr)

reply addr: RX-type address, or register (2) - (12).
reply length: Symbol, decimal digit, or register (2) - (12).
The minimum length is 1; the maximum length is 119.
ecb addr: RX-type address, or register (2) - (12).
text addr: RX-type address or register (2) - (12).

WTOR Macro

WTOR — Write to Operator with Reply 353

Notes:

1. If you code reply addr,reply length,ecb addr, it must be the first parameter
you code and must be preceded by a comma.

2. If you specify inline text on the list form (‘msg’... or (‘text’...)), do not code
the TEXT keyword on the execute form.

3. If you do not code reply addr on the execute form of WTOR, mark its
position with a comma, and code reply addr on the list form. The same is
true for reply length and ecb addr.

,RPLYISUR=reply console reply console: RX-type address or register (2) - (12). If you code RPLYISUR
on the execute form of WTOR, you must code RPLYISUR on the list form.

,CONSID=console id console id: RX-type address or register (2) - (12).
,CONSNAME=console name console name: RX-type address or register (2) - (12).

If you code CONSID (or CONSNAME) on the execute form of WTOR, you
must code the same parameter on the list form.

,SYSNAME=system name system name: RX-type address or register (2) - (12).
If you code SYSNAME on the execute form of WTOR, you must code the
same parameter on the list form.

,CART=cmd/resp token cmd/resp token: RX-type address or register (2) - (12).
If you code CART on the execute form of WTOR, you must code CART on
the list form.

,KEY=key addr key addr: RX-type address or register (2) - (12).
If you code KEY on the execute form of WTOR, you must code KEY on the
list form.

,TOKEN=token addr token addr: RX-type address or register (2) - (12).
If you code TOKEN on the execute form of WTOR, you must code TOKEN on
the list form.

,JOBID=job id job id: RX-type address or register (2) - (12).
If you code JOBID on the execute form of WTOR, you must code JOBID on
the list form.

,JOBNAME=jobname jobname: RX-type address or register (2) - (12).
If you code JOBNAME on the execute form of WTOR, you must code
JOBNAME on the list form.

,LINKAGE=SVC Default : SVC
,LINKAGE=BRANCH If you code LINKAGE on the execute form of WTOR, you must code

LINKAGE on the list form.

,SYNCH=NO Default : NO
,SYNCH=YES

,MF=(E,list addr) list addr: RX-type address, or register (1) - (12).
,MF=(E,list addr,EXTENDED)

WTOR Macro

354 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Parameters
These parameters are explained under the standard form of the WTOR macro, with
the following exceptions:

,reply addr,reply length,ecb addr
If you code reply addr,reply length,ecb addr, it must be the first parameter you
code and must be preceded by a comma.

,MF=(E,list addr)
,MF=(E,list addr,EXTENDED)

Specifies the execute form of the WTOR macro.

list addr specifies the area that the system uses to store the parameters.

If you specify reply addr, reply length, ecb addr, or RPLYISUR on the execute
form of WTOR, together with one or more of the following parameters, you must
specify EXTENDED for the system to generate the parameter list correctly:
v KEY
v TOKEN
v CONSID
v CONSNAME
v TEXT
v RPLYISUR
v CART
v LINKAGE
v SYNCH

Example
Write a message with a prebuilt parameter list pointed to by register 1.
WTOR MF=(E,(1))

WTOR Macro

WTOR — Write to Operator with Reply 355

356 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1988, 2002 357

358 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2002 359

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book is intended to help the customer to code macros that are available to
authorized assembler language programs. This book documents intended
Programming Interfaces that allow the customer to write programs to obtain
services of z/OS.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AFP
v CICS
v DFSORT
v ESA/390
v IBM
v IBMLink
v MVS/ESA
v MVS/SP
v MVS/XA
v OS/390
v Print Services Facility (PSF)
v RMF
v Resource Link
v SP
v SP1
v SP2
v z/Architecture
v z/OS
v z/OS.e

UNIX is a registered trademark of The Open Group in the United States and other
countries.

360 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Other company, product and service names may be the trademarks or service
marks of others.

Notices 361

362 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Index

A
accessibility 357
addressing mode and the services 2
ALET qualification

of parameters 3
AR () mode

description 3
ASC (address space control) mode

defining 3
authorization

testing caller 199

C
callable service

coding 15
caller

testing authorization 199
coding the callable services 15
coding the macros 12
continuation line 15
control access to a serially reusable resource 31
CPU time

obtaining accumulated 203

D
disability 357
documents, licensed x

E
event

waiting for one or more 305

F
functional recovery routine

setting up 25

I
IHATRBPL mapping macro 173
IHATREPL mapping macro 174

K
keyboard 357

L
licensed documents x
log

writing 311
LookAt message retrieval tool x

M
macro

coding 12
forms 11
level

selecting 1
sample 13
selecting level 1
user parameter, passing 4
X-macros

using 10
message retrieval tool, LookAt x

N
Notices 359

P
parameter

setting return 43
process

putting in process-must-complete mode 103
process-must-complete mode 103

Q
query virtual server 185
QVS 185

R
RETRIEVE service

reason codes 155
return codes 155

S
service

ALET qualification 3
summary 16

services
addressing mode 2
ASC mode

defining 3
using 1

SETFRR macro 25
SETLOCK macro 31
SETRP macro 43
shortcut keys 357
SJFREQ macro 53

RETRIEVE service 55, 56
SWBTU_MERGE service 55, 60, 61
TERMINATE service 55, 82
VERIFY service 55, 69

SPIE macro 87

© Copyright IBM Corp. 1988, 2002 363

SPOST macro 93
SRB (service request block)

transferring control 197
SRB status 95
SRBSTAT macro 95
SRBTIMER macro 99
STATUS macro 103
storage

obtaining and releasing 109
STORAGE macro 109
subtask

starting and stopping 103
SUSPEND macro for RBs 127, 129
SUSPEND macro for SRBs 129
SVC exit

type 6 207
SVCUPDTE macro 135
SWA manager

invoking in locate mode 145
SWAREQ macro 145
SWBTUREQ macro 151
SYNCH and SYNCHX macros 161, 169
synchronous exit

to a processing program 161
SYSEVENT macro 169

T
T6EXIT macro 207
TCBTOKEN macro 189

description 189
TCTL macro 197
TESTAUTH macro 199
time limit

establishing for system service 99
TIMEUSED macro 203

U
UCB (unit control block)

obtaining address 247
pinning 257
scanning 265
unpinning 257

UCBINFO macro 209
UCBLOOK macro 247
UCBPIN macro 257
UCBSCAN macro 265
user parameter

passing 4

V
vector time

obtaining accumulated 203
virtual storage

map 287
obtaining private area region size 301
verifying allocation 295

VSMLIST macro 287
VSMLOC macro 295

VSMREGN macro 301

W
WAIT macro 305
WTL macro 311
WTO macro 319
WTOR macro 339

X
X-macros

using 10

364 z/OS V1R4.0 MVS Auth Assm Services Reference SET-WTO

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Programming: Authorized
Assembler Services Reference, Volume 4
(SETFRR-WTOR)

Publication No. SA22-7612-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7612-02

SA22-7612-02

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SA22-7612-02

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How to use this document
	Where to find more information

	Summary of changes
	Using the Services
	Compatibility of MVS Macros
	Addressing Mode (AMODE)
	Address Space Control (ASC) Mode
	Telling the System about the Execution Environment
	Specifying a Macro Version Number
	Register Use
	Handling Return Codes and Reason Codes
	Using X-Macros
	Macro Forms
	Coding the Macros
	Coding the Callable Services
	Service Summary

	SETFRR — Set Up Functional Recovery Routines
	Description

	SETLOCK — Control Access to Serially Reusable Resources
	Description
	SETLOCK OBTAIN
	SETLOCK RELEASE
	SETLOCK TEST

	SETRP — Set Return Parameters
	Description

	SJFREQ — Call Scheduler JCL Facility Services
	Description
	SJFREQ RETRIEVE Service
	SJFREQ SWBTU_MERGE Service
	SJFREQ VERIFY Service
	SJFREQ TERMINATE Service
	Example

	SPIE — Specify Program Interruption Exit
	Description
	SPIE—List Form
	SPIE—Execute Form

	SPOST — Synchronize POST
	Description

	SRBSTAT — Save, Restore, or Modify SRB Status
	Description

	SRBTIMER — Establish Time Limit for System Service
	Description

	STATUS — Stop, Start, or Put a Subtask in Process Must-Complete Mode
	Description
	START/STOP Options
	SET/RESET Option

	STORAGE — Obtain and Release Storage
	Description
	STORAGE OBTAIN
	STORAGE RELEASE

	SUSPEND — Suspend Execution of an RB
	Description

	SUSPEND — Suspend Execution of an SRB
	Description
	SUSPEND (SRB)—List Form
	SUSPEND (SRB)—Execute Form

	SVCUPDTE — SVC Update
	Description
	SVCUPDTE—List Form
	SVCUPDTE—Execute Form

	SWAREQ — Invoke SWA Manager in Locate Mode
	Description
	SWAREQ—List Form
	SWAREQ—Execute Form
	SWAREQ—Modify Form

	SWBTUREQ — Call SJF SWBTU Processing Services
	Description

	SYNCH and SYNCHX — Take a Synchronous Exit to a Processing Program
	Description
	SYNCHX — Take a Synchronous Exit to a Processing Program
	SYNCH and SYNCHX—List Form
	SYNCH and SYNCHX—Execute Form

	SYSEVENT — System Event
	Description
	Notify SRM of Transaction Completion
	Control Swapping
	Obtain System Measurement Information
	Obtain Address Space Classification Information (REQASCL)
	Obtain Address Space Related Information (REQASD and REQFASD)
	Obtain Workload Management Mode Status Information (REQSRMST)
	Obtain Data for Defined Capacity (REQLPDAT)
	Identify Holder of a Resource (ENQHOLD)
	Identify that a Holder has Released Resource (ENQRLSE)
	Associate an Enclave with an Address Space (ENCASSOC)
	Set the State for an Enclave (ENCSTATE)
	Query Amount of Free AUX Storage (FREEAUX)
	Query a Virtual Server (QVS)

	TCBTOKEN — Request or Translate the TTOKEN
	Description
	TCBTOKEN—List Form
	TCBTOKEN—Execute Form

	TCTL — Transfer Control from an SRB Routine
	Description

	TESTAUTH — Test Authorization of Caller
	Description

	TIMEUSED — Obtain Accumulated CPU or Vector Time
	Description

	T6EXIT — Type 6 Exit
	Description

	UCBINFO — Return Information from a UCB
	Description
	UCBINFO DEVCOUNT
	UCBINFO DEVCOUNT—List Form
	UCBINFO DEVCOUNT—Execute Form
	UCBINFO DEVINFO
	UCBINFO DEVINFO—List Form
	UCBINFO DEVINFO—Execute Form
	UCBINFO PATHINFO
	UCBINFO PATHINFO—List Form
	UCBINFO PATHINFO—Execute Form
	UCBINFO PATHMAP
	UCBINFO PATHMAP—List Form
	UCBINFO PATHMAP—Execute Form
	UCBINFO PAVINFO
	UCBINFO PAVINFO—List Form
	UCBINFO PAVINFO—Execute Form
	UCBINFO PRFXDATA
	UCBINFO PRFXDATA—List Form
	UCBINFO PRFXDATA—Execute Form

	UCBLOOK — Obtain Addresses of UCB Segments
	Description
	UCBLOOK—List Form
	UCBLOOK—Execute Form

	UCBPIN — Pinning or Unpinning a UCB
	Description
	UCBPIN—List Form
	UCBPIN—Execute Form

	UCBSCAN — Scan UCBs
	Description
	UCBSCAN COPY
	UCBSCAN COPY—List Form
	UCBSCAN COPY—Execute Form
	UCBSCAN ADDRESS
	UCBSCAN ADDRESS—List Form
	UCBSCAN ADDRESS—Execute Form

	VSMLIST — List Virtual Storage Map
	Description

	VSMLOC — Verify Virtual Storage Allocation
	Description

	VSMREGN — Obtain Private Area Region Size
	Description

	WAIT — Wait for One or More Events
	Description

	WTL — Write To Log
	Description
	WTL—List Form
	WTL—Execute Form

	WTO — Write to Operator
	Description
	WTO—List Form
	WTO—Execute Form

	WTOR — Write to Operator with Reply
	Description
	WTOR—List Form
	WTOR—Execute Form

	Appendix. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

